A blockchain-empowered authentication scheme for worm detection in wireless sensor network

Yuling Chen , Xiong Yang , Tao Li , Yi Ren , Yangyang Long

›› 2024, Vol. 10 ›› Issue (2) : 265 -272.

PDF
›› 2024, Vol. 10 ›› Issue (2) :265 -272. DOI: 10.1016/j.dcan.2022.04.007
Research article
research-article

A blockchain-empowered authentication scheme for worm detection in wireless sensor network

Author information +
History +
PDF

Abstract

Wireless Sensor Network (WSN) is a distributed sensor network composed a large number of nodes with low cost, low performance and self-management. The special structure of WSN brings both convenience and vulnerability. For example, a malicious participant can launch attacks by capturing a physical device. Therefore, node authentication that can resist malicious attacks is very important to network security. Recently, blockchain technology has shown the potential to enhance the security of the Internet of Things (IoT). In this paper, we propose a Blockchain-empowered Authentication Scheme (BAS) for WSN. In our scheme, all nodes are managed by utilizing the identity information stored on the blockchain. Besides, the simulation experiment about worm detection is executed on BAS, and the security is evaluated from detection and infection rate. The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.

Keywords

Wireless Sensor Network (WSN) / Node authentication / Blockchain / Tangle / Worm detection

Cite this article

Download citation ▾
Yuling Chen, Xiong Yang, Tao Li, Yi Ren, Yangyang Long. A blockchain-empowered authentication scheme for worm detection in wireless sensor network. , 2024, 10(2): 265-272 DOI:10.1016/j.dcan.2022.04.007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Qiang, H. Xiaohong, L. Supeng, L. Longjiang, M. Yuming, Deployment strategy of wireless sensor networks for internet of things, China Commun. 8 (2011) 111-120.

[2]

N. Marriwala, P. Rathee,An approach to increase the wireless sensor network lifetime, in:Proc. 2012 World Congr. Inf. Commun. Technol. WICT 2012, 2012, pp. 495-499, https://doi.org/10.1109/WICT.2012.6409128.

[3]

P. Ö, H.S. Butun, Security of the internet of things: vulnerabilities, attacks, and countermeasures, IEEE Commun. Surv. Tutorials 22 (2020) 616-644.

[4]

Y. Yuan, F.Y. Wang, Blockchain: the state of the art and future trends, Zidonghua Xuebao/Acta Autom. Sin. 42 (2016) 481-494.

[5]

T. AbuHmed, N. Nyamaa, D.H. Nyang, Software-based remote code attestation in wireless sensor network, in: GLOBECOM - IEEE Glob. Telecommun. Conf, 2009, https://doi.org/10.1109/GLOCOM.2009.5425280.

[6]

P.H. Yang, S.M. Yen, Memory attestation of wireless sensor nodes through trusted remote agents, IET Inf. Secur. 11 (2017) 338-344.

[7]

G. Qiang, Z. Chongyang,Worm detection based on remote software attestation and sequential probability ratio analysis, J. Cent. China Norm. Univ. Sci. 52 (2018) 461-467.

[8]

Y. Chen, J. Sun, Y. Yang, T. Li, X. Niu, H. Zhou, PSSPR: a source location privacy protection scheme based on sector phantom routing in WSNs, Int. J. Intell. Syst. 37 (2) (2021) 1204-1221.

[9]

C. Mahmoud, S. Aouag, Security for internet of things: a state of the art on existing protocols and open research issues, in: ACM Int. Conf. Proceeding Ser. 17, 2019, pp. 1294-1312, https://doi.org/10.1145/3361570.3361622.

[10]

J. Granjal, E. Monteiro, J.S. Silva, End-to-end transport-layer security for Internet-integrated sensing applications with mutual and delegated ECC public-key authentication, in: 2013 IFIP Netw. Conf., IEEE, 2013, pp. 1-9.

[11]

Di Wang P. Wang C. Wang, Efficient multi-factor user authentication protocol with forward secrecy for real-time data access in WSNs, ACM Trans. Cyber-Phys. Syst. 4 (3) (2020) 30. 1-30.26.

[12]

C. Lin, D. He, X. Huang, M. Khurram Khan, K.K.R. Choo, A new transitively closed undirected graph authentication scheme for blockchain-based identity management systems, IEEE Access 6 (2018) 28203-28212.

[13]

H. Engi, Survey on Transitive Signature Schemes, 2002, pp. 6-11.

[14]

C.G. Peng, Y.L. Tian, B. Zhang, Z.P. Xu, General transitive signature scheme based on homomorphic encryption, Tongxin Xuebao/Journal Commun. 34 (11) (2013) 18-25.

[15]

C. Lin, W. Wu, X. Huang, L. Xu, A new universal designated verifier transitive signature scheme for big graph data, J. Comput. Syst. Sci. 83 (1) (2017) 73-83.

[16]

T. Li, Y. Chen, Y. Wang, Y. Wang, M. Zhao, H. Zhu, Y. Tian, X. Yu, Y. Yang, Rational protocols and attacks in blockchain system, Secur. Commun. Networks (2020), https://doi.org/10.1155/2020/8839047.

[17]

Z.F. Gao, J.L. Zheng, S.Y. Tang, Y. Long, Z.Q. Liu, Z. Liu, D.W. Gu, State-of-the-art survey of consensus mechanisms on DAG-based distributed ledger, Ruan Jian Xue Bao/Journal Softw. 31 (4) (2020) 1124-1142.

[18]

I. Makhdoom, M. Abolhasan, H. Abbas, W. Ni, Blockchain's adoption in IoT: the challenges, and a way forward, J. Netw. Comput. Appl. 125 (2019) 251-279, https://doi.org/10.1016/j.jnca.2018.10.019.

[19]

T. Li, Z. Wang, G. Yang, Y. Cui, Y. Chen, X. Yu, Semi-selfish mining based on hidden Markov decision process, Int. J. Intell. Syst. 36 (7) (2021) 3596-3612.

[20]

T. Li, Z. Wang, Y. Chen, C. Li, Y. Jia, Y. Yang, Is semi-selfish mining available without being detected? Int. J. Intell. Syst. 37 (12Pt.B) (2021) 10576-10597.

[21]

W.F. Silvano, R. Marcelino, Iota Tangle: a cryptocurrency to communicate Internet-of-Things data, Future Generat. Comput. Syst. 112 (2020) 307-319.

[22]

C. Machado, C.M. Westphall, Blockchain incentivized data forwarding in MANETs: strategies and challenges, Ad Hoc Netw. 110 (1) (2021) 10232. 1-10232.19, 102321.

[23]

B. Hu, C. Zhou, Y. Tian, Y. Qin, X. Junping, Using blockchain for multimicrogrid systems, IEEE Trans. Syst. Man, Cybern. Syst. 49 (2019) 1720-1730.

[24]

H. Liang, J. Wu, S. Mumtaz, J. Li, X. Lin, M. Wen, MBID: micro-blockchain-based geographical dynamic intrusion detection for V2X, IEEE Commun. Mag. 57 (10)(2019) 77-83.

[25]

Y. Zhen, H. Liu, Distributed privacy protection strategy for MEC enhanced wireless body area networks, Digit. Commun. Networks. 6 (2) (2020) 229-237.

[26]

L. Feng, H. Zhang, L. Lou, Y. Chen, A Blockchain-Based Collocation Storage Architecture for Data Security Process Platform of WSN, in: 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design ((CSCWD)), IEEE, 2018, pp. 75-80.

[27]

W. Tiberti, A. Carmenini, L. Pomante, D. Cassioli, A lightweight blockchain-based technique for anti-tampering in wireless sensor networks, in: Proc. 23rd Euromicro Conf. Digit. Syst. Des., IEEE, 2020, pp. 577-582.

[28]

Y. Zeng, X. Zhang, R. Akhtar, C. Wang, A blockchain-based scheme for secure data provenance in wireless sensor networks, in: Proc. - 14th Int. Conf. Mob. Ad-Hoc Sens. Networks, MSN 2018, IEEE, 2018, pp. 13-18.

[29]

S. Kushch, F. Prieto-Castrillo, A Rolling Blockchain for a Dynamic WSNs in a Smart City, ArXiv, 2018, pp. 29-34.

[30]

Z. Cui, F. Xue, S. Zhang, X. Cai, Y. Cao, W. Zhang, J. Chen, A hybrid BlockChain-based identity authentication scheme for multi-WSN, IEEE Trans. Serv. Comput. 13 (2020) 241-251, https://doi.org/10.1109/TSC.2020.2964537.

[31]

M.T. Hammi, P. Bellot, A. Serhrouchni, BCTrust: a decentralized authentication blockchain-based mechanism, in: IEEE Wirel. Commun. Netw. Conf. WCNC., IEEE, 2018, pp. 1-6.

[32]

M.T. Hammi, B. Hammi, P. Bellot, A. Serhrouchni, Bubbles of Trust: a decentralized blockchain-based authentication system for IoT, Comput. Secur. 78 (2018) 126-142, https://doi.org/10.1016/j.cose.2018.06.004.

[33]

N. Shi, L. Tan, W. Li, X. Qi, K. Yu, A blockchain-empowered AAA scheme in the large-scale HetNet, Digit. Commun. Networks 7 (3) (2021) 308-316.

[34]

C.C. Zou, L. Gao, W. Gong, D. Towsley, Monitoring and early warning for internet worms, Proc. ACM Conf. Comput. Commun. Secur. (2003) 190-199, https://doi.org/10.1145/948134.948136.

[35]

J.W. Ho, M. Wright, S.K. Das, Fast detection of mobile replica node attacks in wireless sensor networks using sequential hypothesis testing, IEEE Trans. Mobile Comput. 10 (6) (2011) 767-782.

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/