The interconnection between androgen receptor and DNA damage response pathways in prostate cancer

Mallory Sands , Samuel Adams , Jihaeng Lee , Michael Li , Maechen Wang , Thomas Walsh Jr , Leovigildo Leon , Adriana Zablah , Matthew Haerens , Zhichao Liu , Jianneng Li

Current Urology ›› 2025, Vol. 19 ›› Issue (6) : 376 -387.

PDF (457KB)
Current Urology ›› 2025, Vol. 19 ›› Issue (6) : 376 -387. DOI: 10.1097/CU9.0000000000000300
Reviews
research-article

The interconnection between androgen receptor and DNA damage response pathways in prostate cancer

Author information +
History +
PDF (457KB)

Abstract

The androgen receptor (AR) plays a critical role in the development and progression of prostate cancer by regulating key cellular processes such as cell proliferation and apoptosis. Although traditional AR-targeted therapies have shown initial success, acquired resistance remains a significant clinical challenge, often driven by AR alterations and somatic gene mutations associated with homologous recombination deficiency (HRD). Approximately 20% of advanced prostate cancer cases exhibit HRD, resulting in substantial genomic instability and complicating treatment. Fortunately, Food and Drug Administration-approved poly(ADP-ribose) polymerase inhibitors, including olaparib and rucaparib, exploit synthetic lethality to target prostate cancer with HRD, and additional drugs targeting DNA damage response (DDR) proteins are under development. Emerging evidence suggests that AR activity enhances DDR gene expression, with multiple DDR proteins localized near androgen-regulated regions, highlighting a close interaction between AR and DDR pathways. Consequently, recent preclinical and clinical studies have investigated combining AR-targeted therapies with treatments that induce DNA damage, such as radiation therapy, or inhibit DNA repair mechanisms. This review discusses AR's role in cellular processes, the interplay between AR and DDR, and recent advances in prostate cancer treatment strategies.

Keywords

androgen receptor / DNA repair / Prostate cancer

Cite this article

Download citation ▾
Mallory Sands, Samuel Adams, Jihaeng Lee, Michael Li, Maechen Wang, Thomas Walsh Jr, Leovigildo Leon, Adriana Zablah, Matthew Haerens, Zhichao Liu, Jianneng Li. The interconnection between androgen receptor and DNA damage response pathways in prostate cancer. Current Urology, 2025, 19(6): 376-387 DOI:10.1097/CU9.0000000000000300

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgments

Figures were created with BioRender.com.

Statement of ethics

Not applicable.

Conflict of interest statement

JL is a member of the early career editorial board of Current Urology and confirms no involvement in any stage of this article's review process, ensuring unbiased editorial decision making. The other authors declare no conflicts of interest.

Funding source

This study was supported by the Indiana CTSI Core Pilot Funding (FY24CTSIE) and the Startup Funding of JL from the University of Notre Dame (START097S).

Author contributions

MS, JL: Conception and design;

All authors: Provision of study materials, collection and assembly of data and materials, manuscript writing and final approval of the manuscript.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

[1]

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024. CA Cancer J Clin 2024; 74(1):12-49.

[2]

Crawford ED, Heidenreich A, Lawrentschuk N, et al. Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis 2019; 22(1):24-38.

[3]

Sharifi N. Mechanisms of androgen receptor activation in castration-resistant prostate cancer. Endocrinology 2013; 154(11):4010-4017.

[4]

Li M, Li J. Steroids in Cancer: Mechanisms, Therapies, and Challenges in Hormone-Driven Malignancies. 2024. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2024_294

[5]

Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371(11):1028-1038.

[6]

Korpal M, Korn JM, Gao X, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov 2013; 3(9):1030-1043.

[7]

Li J, Alyamani M, Zhang A, et al. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. Elife 2017;6:e20183.

[8]

Li J, Berk M, Alyamani M, et al. Hexose-6-phosphate dehydrogenase blockade reverses prostate cancer drug resistance in xenograft models by glucocorticoid inactivation. Sci Transl Med 2021; 13(595):eabe8226.

[9]

Arora VK, Schenkein E, Murali R, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013; 155(6):1309-1322.

[10]

Jernberg E, Bergh A, Wikström P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr Connect 2017; 6(8):R146-R161.

[11]

Schiewer MJ, Knudsen KE. DNA damage response in prostate cancer. Cold Spring Harb Perspect Med 2019; 9(1):a030486.

[12]

Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5):646-674.

[13]

Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487(7406):239-243.

[14]

Abida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017;2017:PO.17.00029.

[15]

Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161(5):1215-1228. doi:10.1016/j.cell.2015.05.001.

[16]

Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240(4854):4889-4895.

[17]

Dai C, Dehm SM, Sharifi N. Targeting the androgen signaling axis in prostate cancer. J Clin Oncol 2023; 41(26):4267-4278.

[18]

Davey RA, Grossmann M. Androgen receptor structure, function and biology: From bench to bedside. Clin Biochem Rev 2016; 37(1):3-15.

[19]

Deslypere JP, Young M, Wilson JD, McPhaul MJ. Testosterone and 5 alpha-dihydrotestosterone interact differently with the androgen receptor to enhance transcription of the MMTV-CAT reporter gene. Mol Cell Endocrinol 1992; 88(1-3):15-22.

[20]

Wasmuth EV, Broeck AV, LaClair JR, et al. Allosteric interactions prime androgen receptor dimerization and activation. Mol Cell 2022; 82(11):2021-2031.e5.

[21]

Brinkmann AO. Molecular mechanisms of androgen action—A historical perspective. Methods Mol Biol 2011;776:3-24.

[22]

Venken K, De Gendt K, Boonen S, et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: A study in the androgen receptor knockout mouse model. J Bone Miner Res 2006; 21(4):576-585.

[23]

Ikeda Y, Aihara K, Sato T, et al. Androgen receptor gene knockout male mice exhibit impaired cardiac growth and exacerbation of angiotensin II-induced cardiac fibrosis. J Biol Chem 2005; 280(33):29661-22966.

[24]

Altuwaijri S, Lee DK, Chuang KH, et al. Androgen receptor regulates expression of skeletal muscle-specific proteins and muscle cell types. Endocrine 2004; 25(1):27-32.

[25]

Ophoff J, Van Proeyen K, Callewaert F, et al. Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology 2009; 150(8):3558-3566.

[26]

Traish A, Bolanos J, Nair S, Saad F, Morgentaler A. Do androgens modulate the pathophysiological pathways of inflammation? Appraising the contemporary evidence. J Clin Med 2018; 7(12).

[27]

Schiewer MJ, Augello MA, Knudsen KE. The AR dependent cell cycle: Mechanisms and cancer relevance. Mol Cell Endocrinol 2012; 352(1-2):34-45.

[28]

Xu Y, Chen SY, Ross KN, Balk SP. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res 2006; 66(15):7783-7792.

[29]

Knudsen ES, Knudsen KE. Tailoring to RB: Tumour suppressor status and therapeutic response. Nat Rev Cancer 2008; 8(9):714-724.

[30]

Knudsen KE, Arden KC, Cavenee WK. Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 1998; 273(32):20213-20222.

[31]

Armenia J, Wankowicz SAM, Liu D, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet 2018; 50(5):645-651.

[32]

Litvinov IV, Vander Griend DJ, Antony L, et al. Androgen receptor as a licensing factor for DNA replication in androgen-sensitive prostate cancer cells. Proc Natl Acad Sci U S A 2006; 103(41):15085-15090.

[33]

Koryakina Y, Knudsen KE, Gioeli D. Cell-cycle-dependent regulation of androgen receptor function. Endocr Relat Cancer 2015; 22(2):249-264.

[34]

Wen S, Niu Y, Lee SO, Chang C. Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 2014; 40(1):31-40.

[35]

Zhang M, Latham DE, Delaney MA, Chakravarti A. Survivin mediates resistance to antiandrogen therapy in prostate cancer. Oncogene 2005; 24(15):2474-2482.

[36]

Safa AR. c-FLIP, a master anti-apoptotic regulator. Exp Oncol 2012; 34(3):176-184.

[37]

Micheau O. Cellular FLICE-inhibitory protein: An attractive therapeutic target? Expert Opin Ther Targets 2003; 7(4):559-573.

[38]

Fiandalo MV, Kyprianou N. Caspase control: Protagonists of cancer cell apoptosis. Exp Oncol 2012; 34(3):165-175.

[39]

McCourt C, Maxwell P, Mazzucchelli R, et al. Elevation of c-FLIP in castrate-resistant prostate cancer antagonizes therapeutic response to androgen receptor-targeted therapy. Clin Cancer Res 2012; 18(14):3822-3833.

[40]

Gao S, Lee P, Wang H, et al. The androgen receptor directly targets the cellular Fas/FasL-associated death domain protein-like inhibitory protein gene to promote the androgen-independent growth of prostate cancer cells. Mol Endocrinol 2005; 19(7):1792-1802.

[41]

Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004; 25(2):276-308.

[42]

Azad AA, Volik SV, Wyatt AW, et al. Androgen receptor gene aberrations in circulating cell-free DNA: Biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 2015; 21(10):2315-2324.

[43]

Sugiura M, Sato H, Okabe A, et al. Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer. Transl Oncol 2021; 14(1):100915.

[44]

Han D, Labaf M, Zhao Y, et al. Androgen receptor splice variants drive castration-resistant prostate cancer metastasis by activating distinct transcriptional programs. J Clin Invest 2024; 134(11):e168649.

[45]

Kounatidou E, Nakjang S, McCracken SRC, et al. A novel CRISPR-engineered prostate cancer cell line defines the AR-V transcriptome and identifies PARP inhibitor sensitivities. Nucleic Acids Res 2019; 47(11):5634-5647.

[46]

Adamson B, Brittain N, Walker L, et al. The catalytic subunit of DNA-PK regulates transcription and splicing of AR in advanced prostate cancer. J Clin Invest 2023; 133(22):e169200.

[47]

Xu D, Zhan Y, Qi Y, et al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res 2015; 75(17):3663-3671.

[48]

Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 2011; 1(6):487-4895.

[49]

Maylin ZR, Smith C, Classen A, Asim M, Pandha H, Wang Y. Therapeutic exploitation of neuroendocrine transdifferentiation drivers in prostate cancer. Cells 2024; 13(23):1999.

[50]

Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016; 22(3):298-305.

[51]

Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet 2008; 9(8):619-631.

[52]

Grypari IM, Tzelepi V, Gyftopoulos K. DNA damage repair pathways in prostate cancer: A narrative review of molecular mechanisms, emerging biomarkers and therapeutic targets in precision oncology. Int J Mol Sci 2023; 24(14):11418.

[53]

Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 2008; 7(18):2902-2906.

[54]

Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2013; 2(3):130-143.

[55]

Gu J, Lu H, Tippin B, Shimazaki N, Goodman MF, Lieber MR. XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. Embo J 2007; 26(4):1010-1023.

[56]

Li X, Heyer WD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 2008; 18(1):99-113.

[57]

Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 2015; 7(4):a016600.

[58]

Gohil D, Sarker AH, Roy R. Base excision repair: Mechanisms and impact in biology, disease, and medicine. Int J Mol Sci 2023; 24(18):14186.

[59]

Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51(1-2):2-18.

[60]

Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res 2008; 18(1):85-98.

[61]

Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357(6349):409-413.

[62]

Lukashchuk N, Barnicle A, Adelman CA, et al. Impact of DNA damage repair alterations on prostate cancer progression and metastasis. Front Oncol 2023;13:1162644.

[63]

Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene—The grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 2022; 19(1):23-36.

[64]

Zhang W, Liu B, Wu W, et al. Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer. Clin Cancer Res 2018; 24(3):696-707.

[65]

Polkinghorn WR, Parker JS, Lee MX, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 2013; 3(11):1245-1253.

[66]

Goodwin JF, Schiewer MJ, Dean JL, et al. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov 2013; 3(11):1254-1271.

[67]

Asim M, Tarish F, Zecchini HI, et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun 2017; 8(1):374.

[68]

Li L, Karanika S, Yang G, et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal 2017; 10(480):eaam7479.

[69]

Hasterok S, Scott TG, Roller DG, et al. The androgen receptor does not directly regulate the transcription of DNA damage response genes. Mol Cancer Res 2023; 21(12):1329-1341.

[70]

Gómez-González B, Aguilera A. Transcription-mediated replication hindrance: A major driver of genome instability. Genes Dev 2019; 33(15-16):1008-1026.

[71]

Ju BG, Lunyak VV, Perissi V, et al. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 2006; 312(5781):1798-1802.

[72]

Mayeur GL, Kung WJ, Martinez A, Izumiya C, Chen DJ, Kung HJ. Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells. J Biol Chem 2005; 280(11):10827-10833.

[73]

Schiewer MJ, Knudsen KE. Linking DNA damage and hormone signaling pathways in cancer. Trends Endocrinol Metab 2016; 27(4):216-225.

[74]

Puc J, Kozbial P, Li W, et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 2015; 160(3):367-380.

[75]

Lin C, Yang L, Tanasa B, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 2009; 139(6):1069-1083.

[76]

Launonen KM, Paakinaho V, Sigismondo G, et al. Chromatin-directed proteomics-identified network of endogenous androgen receptor in prostate cancer cells. Oncogene 2021; 40(27):4567-4579.

[77]

Goodwin JF, Kothari V, Drake JM, et al. DNA-PKcs-mediated transcriptional regulation drives prostate cancer progression and metastasis. Cancer Cell 2015; 28(1):97-113.

[78]

Haffner MC, Aryee MJ, Toubaji A, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 2010; 42(8):668-675.

[79]

Magi-Galluzzi C, Tsusuki T, Elson P, et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 2011; 71(5):489-497.

[80]

Schiewer MJ, Goodwin JF, Han S, et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2012; 2(12):1134-1149.

[81]

Gui B, Gui F, Takai T, et al. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc Natl Acad Sci U S A 2019; 116(29):14573-14582.

[82]

Yeh S, Hu YC, Rahman M, et al. Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells. Proc Natl Acad Sci U S A 2000; 97(21):11256-11261.

[83]

Huggins C, RE S, Jr HCV. Studies on Prostatic Cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch Surg 1941; 43(2):209-223.

[84]

Choi E, Buie J, Camacho J, Sharma P, de Riese WTW. Evolution of androgen deprivation therapy (ADT) and its new emerging modalities in prostate cancer: An update for practicing urologists, clinicians and medical providers. Res Rep Urol 2022;14:87-108.

[85]

Rose M, Burgess JT, O'Byrne K, Richard DJ, Bolderson E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol 2020;8:564601.

[86]

Luo J, Li Y, Zhang Y, et al. An update on small molecule compounds targeting synthetic lethality for cancer therapy. Eur J Med Chem 2024;278:116804.

[87]

de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020; 382(22):2091-2102.

[88]

Fizazi K, Piulats JM, Reaume MN, et al. Rucaparib or physician's choice in metastatic prostate cancer. N Engl J Med 2023; 388(8):719-732.

[89]

de Bono JS, Mehra N, Scagliotti GV, et al. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): An open-label, phase 2 trial. Lancet Oncol 2021; 22(9):1250-1264.

[90]

Smith MR, Scher HI, Sandhu S, et al. Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): A multicentre, open-label, phase 2 trial. Lancet Oncol 2022; 23(3):362-373. doi:10.1016/s1470-2045(21)00757-9.

[91]

Thorsell AG, Ekblad T, Karlberg T, et al. Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem 2017; 60(4):1262-1271.

[92]

Farrés J, Martín-Caballero J, Martínez C, et al. Parp-2 is required to maintain hematopoiesis following sublethal γ-irradiation in mice. Blood 2013; 122(1):44-54.

[93]

Aapro M, Beguin Y, Bokemeyer C, et al. Management of anaemia and iron deficiency in patients with cancer: ESMO clinical practice guidelines. Ann Oncol 2018; 29(Suppl 4):iv96-iv110.

[94]

Johannes JW, Balazs A, Barratt D, et al. Discovery of 5-{4-[(7-Ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3- yl)methyl]piperazin-1-yl}-N-methylpyridine-2-carboxamide (AZD5305): A PARP1-DNA trapper with high selectivity for PARP1 over PARP2 and other PARPs. J Med Chem 2021; 64(19):14498-14512.

[95]

Yap TA, Im S-A, Schram AM, et al. Abstract CT007: PETRA: First in class, first in human trial of the next generation PARP1-selective inhibitor AZD5305 in patients (pts) with BRCA1/2, PALB2 or RAD51C/D mutations. Cancer Res 2022; 82(12_Supplement):CT007-CT007.

[96]

Tsujino T, Takai T, Hinohara K, et al. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun 2023; 14(1):252.

[97]

Ta HQ, Gioeli D. The convergence of DNA damage checkpoint pathways and androgen receptor signaling in prostate cancer. Endocr Relat Cancer 2014; 21(5):R395-R407. doi:10.1530/erc-14-0217.

[98]

Pilepich MV, Winter K, Lawton CA, et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma—Long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys 2005; 61(5):1285-1290.

[99]

Lawton CAF, Lin X, Hanks GE, et al. Duration of androgen deprivation in locally advanced prostate cancer: Long-term update of NRG oncology RTOG 9202. Int J Radiat Oncol Biol Phys 2017; 98(2):296-303.

[100]

Bolla M, de Reijke TM, Van Tienhoven G, et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med 2009; 360(24):2516-2527.

[101]

Saad F, Clarke NW, Oya M, et al. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): Final prespecified overall survival results of a randomised, double-blind, phase 3 trial. Lancet Oncol 2023; 24(10):1094-1108.

[102]

Chi KN, Rathkopf D, Smith MR, et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J Clin Oncol 2023; 41(18):3339-3351.

[103]

Agarwal N, Azad AA, Carles J, et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): A randomised, placebo-controlled, phase 3 trial. Lancet 2023; 402(10398):291-303.

[104]

Malone S, Roy S, Eapen L, et al. Sequencing of androgen-deprivation therapy with external-beam radiotherapy in localized prostate cancer: A phase III randomized controlled trial. J Clin Oncol 2020; 38(6):593-601.

[105]

Spratt DE, Malone S, Roy S, et al. Prostate radiotherapy with adjuvant androgen deprivation therapy (ADT) improves metastasis-free survival compared to neoadjuvant ADT: An individual patient meta-analysis. J Clin Oncol 2021; 39(2):136-144.

[106]

Ma TM, Sun Y, Malone S, et al. Sequencing of androgen-deprivation therapy of short duration with radiotherapy for nonmetastatic prostate cancer (SANDSTORM): A pooled analysis of 12 randomized trials. J Clin Oncol 2023; 41(4):881-892.

[107]

Clarke NW, Armstrong AJ, Thiery-Vuillemin A, et al. Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid 2022; 1(9):EVIDoa2200043.

[108]

Castro E, Wang D, Walsh S, et al. Talazoparib plus enzalutamide versus olaparib plus abiraterone acetate and niraparib plus abiraterone acetate for metastatic castration-resistant prostate cancer: A matching-adjusted indirect comparison. Prostate Cancer Prostatic Dis 2024. doi:10.1038/s41391-024-00924-x.

[109]

A randomized, 2-cohort, double-blind, placebo-controlled, phase III study of saruparib (AZD5305) in combination with physician's choice new hormonal agents in patients with HRRm and non-HRRm metastatic castration-sensitive prostate cancer (EvoPAR-Prostate01). National Library of Medicine (US). Available at: https://clinicaltrials.gov/study/NCT06120491. Accessed August 7, 2025.

[110]

Liu G, Mu XJ, Fizazi K, et al. Abstract CT231: Identification of a novel agnostic predictive multiomic signature via Elastic Net/Machine Learning in TALAPRO-2 (TP-2), a phase 3 study of talazoparib (TALA) + enzalutamide (ENZA) vs placebo (PBO) + ENZA as first-line (1 L) treatment in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Cancer Res 2024; 84(7_Supplement):CT231-CT231.

[111]

Piulats JM, Azad AA, Laird AD, et al. Abstract CT018: TMPRSS2-ERG and RB1 as candidate predictive biomarkers for efficacy in TALAPRO-2: phase 3 study of talazoparib (TALA) + enzalutamide (ENZA) vs placebo (PBO) + ENZA as first-line (1 L) treatment in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Cancer Res 2024;84(7_Supplement):CT018-CT018.

[112]

Mizuno K, Beltran H. Future directions for precision oncology in prostate cancer. Prostate 2022; 82(Suppl 1):S86-S96.

[113]

Kwon WA, Joung JY. Immunotherapy in prostate cancer: From a “cold” tumor to a “hot” prospect. Cancers (Basel) 2025; 17(7):1064.

[114]

Cioni B, Zaalberg A, van Beijnum JR, et al. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat Commun 2020; 11(1):4498.

[115]

Carlsen L, El-Deiry WS. Anti-cancer immune responses to DNA damage response inhibitors: Molecular mechanisms and progress toward clinical translation. Front Oncol 2022;12:998388.

[116]

Lucarelli G, Rutigliano M, Galleggiante V, et al. Metabolomic profiling for the identification of novel diagnostic markers in prostate cancer. Expert Rev Mol Diagn 2015; 15(9):1211-1224.

[117]

Lasorsa F, di Meo NA, Rutigliano M, et al. Emerging hallmarks of metabolic reprogramming in prostate cancer. Int J Mol Sci 2023; 24(2):910.

AI Summary AI Mindmap
PDF (457KB)

288

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/