Advances in gene therapy for Lafora disease: Intravenous recombinant adeno-associated virus-mediated delivery of EPM2A and EPM2B genes

Luis Zafra-Puerta , Nerea Iglesias-Cabeza , Miriam Sciaccaluga , Laura Bellingacci , Jacopo Canonichesi , Gema Sánchez-Martín , Cinzia Costa , Marina P. Sánchez , José M. Serratosa

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (11) : e70514

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (11) : e70514 DOI: 10.1002/ctm2.70514
RESEARCH ARTICLE

Advances in gene therapy for Lafora disease: Intravenous recombinant adeno-associated virus-mediated delivery of EPM2A and EPM2B genes

Author information +
History +
PDF

Abstract

Background: Lafora disease is a rare and fatal form of progressive myoclonus epilepsy that typically manifests in late childhood, presenting with seizures and progressive neurological decline. It is caused by mutations in EPM2A or EPM2B genes, encoding laforin and malin, which form a complex that regulates glycogen metabolism and mitigates cellular stress. Loss of function in either gene leads to the accumulation of Lafora bodies, insoluble polyglucosan aggregates that contribute to neurodegeneration.

Methods: We previously demonstrated the efficacy of gene therapy using intracerebroventricular delivery of rAAV2/9 vectors expressing EPM2A or EPM2B in mouse models of Lafora disease. Building on these findings, we investigated the therapeutic and translational potential of a less invasive approach using intravenous delivery of rAAV2/9P31 vectors, which efficiently cross the blood–brain barrier. Gene delivery was performed at presymptomatic stages in Epm2a−/− and Epm2b−/− mice.

Results: Intravenous gene therapy with rAAV2/9P31 vectors carrying EPM2A or EPM2B reversed neuropathological features of the disease, restored neuronal excitability and synaptic plasticity, and effectively prevented Lafora body formation. The therapeutic outcomes were comparable or superior to those achieved with intracerebroventricular administration. Long-term evaluation revealed no evidence of hepatotoxicity or immunogenicity.

Conclusion: Our results support intravenous rAAV2/9P31–mediated gene therapy as a promising, less invasive, and safe treatment strategy for Lafora disease, with strong potential for clinical translation.

Keywords

Early treatment / EPM2A / EPM2B / gene therapy / intravenous administration / Lafora disease / laforin / malin / recombinant adeno-associated virus

Cite this article

Download citation ▾
Luis Zafra-Puerta, Nerea Iglesias-Cabeza, Miriam Sciaccaluga, Laura Bellingacci, Jacopo Canonichesi, Gema Sánchez-Martín, Cinzia Costa, Marina P. Sánchez, José M. Serratosa. Advances in gene therapy for Lafora disease: Intravenous recombinant adeno-associated virus-mediated delivery of EPM2A and EPM2B genes. Clinical and Translational Medicine, 2025, 15(11): e70514 DOI:10.1002/ctm2.70514

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lafora GR, Glueck B. Beitrag zur Histopathologie der myoklonischen Epilepsie. Zeitschrift für die gesamte Neurologie und Psychiatrie. 1911; 6(1): 1-14.

[2]

Serratosa JM, Minassian BA, Ganesh S. Progressive myoclonus epilepsy of Lafora. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds. Jasper's Basic Mechanisms of the Epilepsies. National Center for Biotechnology Information (US); 2012. Copyright © 2012, Michael A Rogawski, Antonio V Delgado-Escueta, Jeffrey L Noebels, Massimo Avoli and Richard W Olsen.; 2012.

[3]

Berkovic SF, Andermann F, Carpenter S, Wolfe LS. Progressive myoclonus epilepsies: specific causes and diagnosis. N Engl J Med. 1986; 315(5): 296-305.

[4]

Heycoptenhamm V, De Jager H. Progressive myoclonus epilepsy with Lafora bodies. Clin-Pathol Features. 1963; 4: 95-119.

[5]

Serratosa JM, Delgado-Escueta AV, Posada I, et al. The gene for progressive myoclonus epilepsy of the Lafora type maps to chromosome 6q. Hum Mol Genet. 1995; 4(9): 1657-1663.

[6]

Minassian BA, Lee JR, Herbrick JA, et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet. 1998; 20(2): 171-174.

[7]

Serratosa JM, Gómez-Garre P, Gallardo ME, et al. A novel protein tyrosine phosphatase gene is mutated in progressive myoclonus epilepsy of the Lafora type (EPM2). Hum Mol Genet. 1999; 8(2): 345-352.

[8]

Ganesh S, Agarwala KL, Ueda K, et al. Laforin, defective in the progressive myoclonus epilepsy of Lafora type, is a dual-specificity phosphatase associated with polyribosomes. Hum Mol Genet. 2000; 9(15): 2251-2261.

[9]

Chan EM, Young EJ, Ianzano L, et al. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet. 2003; 35(2): 125-127.

[10]

Chan EM, Bulman DE, Paterson AD, et al. Genetic mapping of a new Lafora progressive myoclonus epilepsy locus (EPM2B) on 6p22. J Med Genet. 2003; 40(9): 671-675.

[11]

Gentry MS, Worby CA, Dixon JE. Insights into Lafora disease: malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin. Proc Natl Acad Sci U S A. 2005; 102(24): 8501-8506.

[12]

Gentry MS, Romá-Mateo C, Sanz P, et al. Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii. FEBS J. 2013; 280(2): 525-537.

[13]

Vilchez D, Ros S, Cifuentes D, et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007; 10(11): 1407-1413.

[14]

Skurat AV, Segvich DM, Contreras CJ, et al. Impaired malin expression and interaction with partner proteins in Lafora disease. J Biol Chem. 2024; 300(5): 107271.

[15]

Zeng L, Wang Y, Baba O, Zheng P, Liu Y, Liu Y. Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells. FEBS J. 2012; 279(14): 2467-2478.

[16]

Aguado C, Sarkar S, Korolchuk VI, et al. Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet. 2010; 19(14): 2867-2876.

[17]

Lahuerta M, Aguado C, Sánchez-Martín P, Sanz P, Knecht E. Degradation of altered mitochondria by autophagy is impaired in Lafora disease. FEBS J. 2018; 285(11): 2071-2090.

[18]

Romá-Mateo C, Aguado C, García-Giménez JL, et al. Increased oxidative stress and impaired antioxidant response in Lafora disease. Mol Neurobiol. 2015; 51(3): 932-946.

[19]

Romá-Mateo C, Aguado C, García-Giménez JL, Knecht E, Sanz P, Pallardó FV. Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radical Biol Med. 2015; 88: 30-41.

[20]

Vernia S, Rubio T, Heredia M, Rodríguez de Córdoba S, Sanz P. Increased endoplasmic reticulum stress and decreased proteasomal function in lafora disease models lacking the phosphatase laforin. PLoS One. 2009; 4(6): e5907.

[21]

Garyali P, Siwach P, Singh PK, et al. The malin-laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system. Hum Mol Genet. 2009; 18(4): 688-700.

[22]

Mittal S, Dubey D, Yamakawa K, Ganesh S. Lafora disease proteins malin and laforin are recruited to aggresomes in response to proteasomal impairment. Hum Mol Genet. 2007; 16(7): 753-762.

[23]

Lafora GR. Über das Vorkommen amyloider Körperchen im Innern der Ganglienzellen. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin. 1911; 205(2): 295-303.

[24]

Yokoi S, Austin J, Witmer F, Sakai M. Studies in myoclonus epilepsy (Lafora body form). I. Isolation and preliminary characterization of Lafora bodies in two cases. Arch Neurol. 1968; 19(1): 15-33.

[25]

Sullivan MA, Nitschke S, Steup M, Minassian BA, Nitschke F. Pathogenesis of Lafora disease: transition of soluble glycogen to insoluble polyglucosan. review. Int J Mol Sci. 2017; 18(8): 1743.

[26]

Gentry MS, Guinovart JJ, Minassian BA, Roach PJ, Serratosa JM. Lafora disease offers a unique window into neuronal glycogen metabolism. J Biol Chem. 2018; 293(19): 7117-7125.

[27]

Sakai M, Austin J, Witmer F, Trueb L. Studies in myoclonus epilepsy (Lafora body form). II. Polyglucosans in the systemic deposits of myoclonus epilepsy and in corpora amylacea. Neurology. 1970; 20(2): 160-176.

[28]

Liu Y, Wang Y, Wu C, Liu Y, Zheng P. Deletions and missense mutations of EPM2A exacerbate unfolded protein response and apoptosis of neuronal cells induced by endoplasm reticulum stress. Hum Mol Genet. 2009; 18(14): 2622-2631.

[29]

Criado O, Aguado C, Gayarre J, et al. Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum Mol Genet. 2012; 21(7): 1521-1533.

[30]

Knecht E, Aguado C, Sarkar S, et al. Impaired autophagy in Lafora disease. Autophagy. 2010; 6(7): 991-993.

[31]

Puri R, Suzuki T, Yamakawa K, Ganesh S. Dysfunctions in endosomal-lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet. 2012; 21(1): 175-184.

[32]

Rao SN, Maity R, Sharma J, et al. Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Hum Mol Genet. 2010; 19(23): 4726-4734.

[33]

Muñoz-Ballester C, Berthier A, Viana R, Sanz P. Homeostasis of the astrocytic glutamate transporter GLT-1 is altered in mouse models of Lafora disease. Biochim Biophys Acta. 2016; 1862(6): 1074-1083.

[34]

Perez-Jimenez E, Viana R, Muñoz-Ballester C, et al. Endocytosis of the glutamate transporter 1 is regulated by laforin and malin: implications in Lafora disease. Glia. 2021; 69(5): 1170-1183.

[35]

Muñoz-Ballester C, Santana N, Perez-Jimenez E, Viana R, Artigas F, Sanz P. In vivo glutamate clearance defects in a mouse model of Lafora disease. Exp Neurol. 2019; 320: 112959.

[36]

Duran J, Gruart A, García-Rocha M, Delgado-García JM, Guinovart JJ. Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet. 2014; 23(12): 3147-3156.

[37]

Duran J, Hervera A, Markussen KH, et al. Astrocytic glycogen accumulation drives the pathophysiology of neurodegeneration in Lafora disease. Brain. 2021; 144(8): 2349-2360.

[38]

López-González I, Viana R, Sanz P, Ferrer I. Inflammation in Lafora disease: evolution with disease progression in Laforin and Malin knock-out mouse models. Mol Neurobiol. 2017; 54(5): 3119-3130.

[39]

Berthier A, Payá M, García-Cabrero AM, et al. pharmacological interventions to ameliorate neuropathological symptoms in a mouse model of Lafora disease. Mol Neurobiol. 2016; 53(2): 1296-1309.

[40]

Burgos DF, Sciaccaluga M, Worby CA, et al. Epm2a(R240X) knock-in mice present earlier cognitive decline and more epileptic activity than Epm2a(-/-) mice. Neurobiol Dis. 2023; 181: 106119.

[41]

Lahuerta M, Gonzalez D, Aguado C, et al. Reactive glia-derived neuroinflammation: a novel hallmark in Lafora progressive myoclonus epilepsy that progresses with age. Mol Neurobiol. 2020; 57(3): 1607-1621.

[42]

Romá-Mateo C, Lorente-Pozo S, Márquez-Thibaut L, et al. Age-related microRNA overexpression in Lafora disease male mice provides links between neuroinflammation and oxidative stress. Int J Mol Sci. 2023; 24(2): 1089.

[43]

Rubio T, Viana R, Moreno-Estellés M, Campos-Rodríguez Á, Sanz P. TNF and IL6/Jak2 signaling pathways are the main contributors of the glia-derived neuroinflammation present in Lafora disease, a fatal form of progressive myoclonus epilepsy. Neurobiol Dis. 2023; 176: 105964.

[44]

Sanz P, Garcia-Gimeno MA. Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci. 2020; 21(11): 4096.

[45]

Ganesh S, Delgado-Escueta AV, Sakamoto T, et al. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet. 2002; 11(11): 1251-1262.

[46]

García-Cabrero AM, Marinas A, Guerrero R, de Córdoba SR, Serratosa JM, Sánchez MP. Laforin and malin deletions in mice produce similar neurologic impairments. J Neuropathol Exp Neurol. 2012; 71(5): 413-421.

[47]

Sánchez-Elexpuru G, Serratosa JM, Sanz P, Sánchez MP. 4-Phenylbutyric acid and metformin decrease sensitivity to pentylenetetrazol-induced seizures in a malin knockout model of Lafora disease. Neuroreport. 2017; 28(5): 268-271.

[48]

Burgos DF, Machío-Castello M, Iglesias-Cabeza N, et al. Early treatment with metformin improves neurological outcomes in Lafora disease. Neurotherapeutics. 2023; 20(1): 230-244.

[49]

Berthier A, Payá M, García-Cabrero AM, et al. Pharmacological interventions to ameliorate neuropathological symptoms in a mouse model of Lafora disease. Mol Neurobiol. 2016; 53(2): 1296-1309.

[50]

Sánchez-Elexpuru G, Serratosa JM, Sánchez MP. Sodium selenate treatment improves symptoms and seizure susceptibility in a malin-deficient mouse model of Lafora disease. Epilepsia. 2017; 58(3): 467-475.

[51]

Zafra-Puerta L, Colpaert M, Iglesias-Cabeza N, et al. Effect of intracerebroventricular administration of alglucosidase alfa in two mouse models of Lafora disease: relevance for clinical practice. Epilepsy Res. 2024; 200: 107317.

[52]

Gumusgoz E, Guisso DR, Kasiri S, et al. Targeting Gys1 with AAV-SaCas9 Decreases pathogenic polyglucosan bodies and neuroinflammation in adult polyglucosan body and Lafora disease mouse models. Neurotherapeutics. 2021; 18(2): 1414-1425.

[53]

Gumusgoz E, Kasiri S, Guisso DR, et al. AAV-mediated artificial miRNA reduces pathogenic polyglucosan bodies and neuroinflammation in adult polyglucosan body and Lafora disease mouse models. Neurotherapeutics. 2022; 19(3): 982-993.

[54]

Ahonen S, Nitschke S, Grossman TR, et al. Gys1 antisense therapy rescues neuropathological bases of murine Lafora disease. Brain. 2021; 144(10): 2985-2993.

[55]

Donohue KJ, Fitzsimmons B, Bruntz RC, et al. Gys1 antisense therapy prevents disease-driving aggregates and epileptiform discharges in a Lafora disease mouse model. Neurotherapeutics. 2023; 20(6): 1808-1819.

[56]

Mollá B, Heredia M, Campos Á, Sanz P. Pharmacological Modulation of glutamatergic and neuroinflammatory pathways in a Lafora disease mouse model. Molecular Neurobiology. 2022; 59(10): 6018-6032.

[57]

Mollá B, Heredia M, Sanz P. Modulators of neuroinflammation have a beneficial effect in a Lafora disease mouse model. Molecular Neurobiology. 2021; 58(6): 2508-2522.

[58]

Zafra-Puerta L, Iglesias-Cabeza N, Burgos DF, et al. Gene therapy for Lafora disease in the Epm2a(-/-) mouse model. Mol Ther. 2024; 32(7): 2130-2149.

[59]

Nonnenmacher M, Wang W, Child MA, et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev. 2021; 20: 366-378.

[60]

Grimm D, Pluribus Unum ZolotukhinSE. 50 years of research, millions of viruses, and one goal–tailored acceleration of AAV evolution. Molec Ther. 2015; 23(12): 1819-1831.

[61]

Bunuales M, Garduno A, Chillon M, et al. Characterization of brain transduction capability of a BBB-penetrant AAV vector in mice, rats and macaques reveals differences in expression profiles. Gene Ther. 2024; 31(9-10): 455-466.

[62]

Moyer TC, Hoffman BA, Chen W, et al. Highly conserved brain vascular receptor ALPL mediates transport of engineered AAV vectors across the blood-brain barrier. Mol Ther. 2025; 33(8): 3902-3916.

[63]

Zhang R, Liu Y, Yu F, et al. Structural basis of the recognition of adeno-associated virus by the neurological system-related receptor carbonic anhydrase IV. PLoS Pathog. 2024; 20(2): e1011953.

[64]

Bisulli F, Muccioli L, d'Orsi G, et al. Treatment with metformin in twelve patients with Lafora disease. Orphanet J Rare Dis. 2019; 14(1): 149.

[65]

Pondrelli F, Muccioli L, Licchetta L, et al. Natural history of Lafora disease: a prognostic systematic review and individual participant data meta-analysis. Orphanet J Rare Dis. 2021; 16(1): 362.

[66]

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010; 8(6): e1000412.

[67]

Piedra J, Ontiveros M, Miravet S, Penalva C, Monfar M, Chillon M. Development of a rapid, robust, and universal picogreen-based method to titer adeno-associated vectors. Hum Gene Ther Methods. 2015; 26(1): 35-42.

[68]

Ammothumkandy A, Ravina K, Wolseley V, et al. Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nat Neurosci. 2022; 25(4): 493-503.

[69]

Kleschevnikov AM, Belichenko PV, Villar AJ, Epstein CJ, Malenka RC, Mobley WC. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci. 2004; 24(37): 8153-8160.

[70]

Costa C, Parnetti L, D'Amelio M, et al. Epilepsy, amyloid-β, and D1 dopamine receptors: a possible pathogenetic link?. Neurobiol Aging. 2016; 48: 161-171.

[71]

Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology (Baltimore, Md). 2005; 41(6): 1313-1321.

[72]

Selvan N, Mehta N, Venkateswaran S, et al. Endolysosomal N-glycan processing is critical to attain the most active form of the enzyme acid alpha-glucosidase. J Biol Chem. 2021; 296: 100769.

[73]

Liu J, Reeves C, Jacques T, et al. Nestin-expressing cell types in the temporal lobe and hippocampus: morphology, differentiation, and proliferative capacity. Glia. 2018; 66(1): 62-77.

[74]

Bellingacci L, Tallarico M, Mancini A, et al. Non-competitive AMPA glutamate receptors antagonism by perampanel as a strategy to counteract hippocampal hyper-excitability and cognitive deficits in cerebral amyloidosis. Neuropharmacology. 2023; 225: 109373.

[75]

Lala V, Zubair M, Minter DA. Liver Function Tests. StatPearls. StatPearls Publishing LLC.; 2024.

[76]

Schuster DJ, Dykstra JA, Riedl MS, et al. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat. 2014; 8: 42.

[77]

Gray SJ, Woodard KT, Samulski RJ. Viral vectors and delivery strategies for CNS gene therapy. Therapeut Deliv. 2010; 1(4): 517-534.

[78]

de Graaf AS, Ancker E, Rutherfoord GS, van der Walt JJ, Rossouw DJ. Lafora-body disease with optic atrophy, macular degeneration and cardiac failure. J Neurol Sci. 1989; 93(1): 69-84.

[79]

Gómez-Garre P, Gutiérrez-Delicado E, Gómez-Abad C, et al. Hepatic disease as the first manifestation of progressive myoclonus epilepsy of Lafora. Neurology. 2007; 68(17): 1369-1373.

[80]

Villalba-Orero M, Sánchez-Elexpuru G, López-Olañeta M, et al. Lafora disease is an inherited metabolic cardiomyopathy. J Am Coll Cardiol. 2017; 69(24): 3007-3009.

[81]

Koch C, Rapp M, Segev I. A brief history of time (constants). Cerebral Cortex. 1996; 6(2): 93-101.

[82]

Berg RW, Ditlevsen S. Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations. J Neurophysiol. 2013; 110(4): 1021-1034.

[83]

Mahon S, Vautrelle N, Pezard L, et al. Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle. J Neurosci. 2006; 26(48): 12587-12595.

[84]

Ghiglieri V, Picconi B, Sgobio C, et al. Epilepsy-induced abnormal striatal plasticity in Bassoon mutant mice. Euro J Neurosci. 2009; 29(10): 1979-1993.

[85]

Yang T, Zhang Y, Zhang T, et al. Altered dynamic functional connectivity of striatal-cortical circuits in Juvenile Myoclonic Epilepsy. Seizure. 2022; 101: 103-108.

[86]

Martin JH. Neuroanatomy: Text and Atlas. McGraw-Hill Companies, Incorporated; 2003.

[87]

Cataldi S, Stanley AT, Miniaci MC, Sulzer D. Interpreting the role of the striatum during multiple phases of motor learning. FEBS J. 2022; 289(8): 2263-2281.

[88]

Ghiglieri V, Sgobio C, Costa C, Picconi B, Calabresi P. Striatum-hippocampus balance: from physiological behavior to interneuronal pathology. Progr Neurobiol. 2011; 94(2): 102-114.

[89]

Ertl HCJ. Immunogenicity and toxicity of AAV gene therapy. Front Immunol. 2022; 13: 975803.

[90]

Shen W, Liu S, Ou L. rAAV immunogenicity, toxicity, and durability in 255 clinical trials: a meta-analysis. Front Immunol. 2022; 13: 1001263.

[91]

Chand D, Mohr F, McMillan H, et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol. 2021; 74(3): 560-566.

[92]

Shieh PB, Bönnemann CG, Müller-Felber W, et al. Re: “moving forward after two deaths in a gene therapy trial of myotubular myopathy” by Wilson and Flotte. Human Gene Therapy. 2020; 31(15-16): 787.

[93]

Day JW, Mendell JR, Mercuri E, et al. Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy. Drug Safety. 2021; 44(10): 1109-1119.

[94]

Hudry E, Aihara F, Meseck E, et al. Liver injury in cynomolgus monkeys following intravenous and intrathecal scAAV9 gene therapy delivery. Mol Ther: J Am Soc Gene Ther. 2023; 31(10): 2999-3014.

[95]

Turnbull J, Wang P, Girard JM, et al. Glycogen hyperphosphorylation underlies lafora body formation. Ann Neurol. 2010; 68(6): 925-933.

[96]

Deniz K. Ground glass-like inclusions: associated with liver toxicity. Turk Patoloji Dergisi. 2021; 37(1): 51-55.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/