PDF
Abstract
Background: The metabolic syndrome encompasses a state of inflammation and metabolic dysfunction, possibly mediated via a disturbed intestinal barrier. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as liraglutide, have shown promising anti-inflammatory effects beyond glucose lowering and weight loss, but the underlying mechanism remains to be elucidated. We hypothesised that GLP-1RAs improve the intestinal barrier function and overall inflammatory status by direct gene activation in mucus-secreting Brunner's glands in the mouse duodenum, known for their high density of glucagon-like peptide-1 receptors (GLP-1Rs).
Methods: Using bulk RNA sequencing, in situ hybridisation, and immunohistochemistry, we analysed the change in the genetic phenotype of mouse Brunner's gland cells following GLP-1R activation by liraglutide.
Results: We show that liraglutide induces a novel and robust upregulation of the gene for the Cystic fibrosis transmembrane conductance regulator, Cftr, in Brunner's glands as a part of an overall genetic phenotype involved in ion channel activity, mucus secretion, and hydration via GLP-1R activation. Additionally, we found a robust upregulation of the genes Muc5b, Il33, Ren1, and Vldlr in Brunner's glands.
Conclusion: Collectively, our results imply an enhanced mucus response from Brunner's glands following GLP-1R activation, which might play a role in the effect of GLP-1.
Keywords
Brunner's glands
/
Cftr
/
GLP-1
/
gut
/
incretin
/
intestinal barrier
/
mucus
Cite this article
Download citation ▾
Louise Marie Voetmann, Bidda Rolin, Rikke Kaae Kirk, Lotte Bjerre Knudsen, Myrte Merkestein, Jonas Ahnfelt-Rønne, Anne Louise Kodal, Carsten Jessen, Asli Ozen, Charles Pyke, Axel Kornerup Hansen.
Liraglutide upregulates the Cftr gene and regulates the mucus transcriptome profile in Brunner's glands in mice.
Clinical and Translational Medicine, 2025, 15(11): e70510 DOI:10.1002/ctm2.70510
| [1] |
Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut. 2020; 69(12): 2232-2243.
|
| [2] |
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018; 20(2): 12.
|
| [3] |
Cherrington AD, Rajagopalan H, Maggs D, Devière J. Hydrothermal duodenal mucosal resurfacing: role in the treatment of metabolic disease. Gastrointest Endoscopy Clinics N Am. 2017; 27(2): 299-311.
|
| [4] |
Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol. 2019; 10: 155.
|
| [5] |
Leite AR, Angélico-Gonçalves A, Vasques-Nóvoa F, et al. Effect of glucagon-like peptide-1 receptor agonists on cardiovascular events in overweight or obese adults without diabetes: a meta-analysis of placebo-controlled randomized trials. Diabetes Obes Metab. 2022; 24(8): 1676-1680.
|
| [6] |
Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012; 307(1): 56-65.
|
| [7] |
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007; 87(4): 1409-1439.
|
| [8] |
Grunddal KV, Jensen EP, Ørskov C, et al. Expression profile of the GLP-1 receptor in the gastrointestinal tract and pancreas in adult female mice. Endocrinology. 2021; 163(1): bqab216.
|
| [9] |
Korner M, Stockli M, Waser B, Reubi JC. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007; 48(5): 736-743.
|
| [10] |
Krause WJ. Brunner's glands: a structural, histochemical and pathological profile. Prog Histochem Cytochem. 2000; 35(4): 259-367.
|
| [11] |
Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. 2018; 124: 3-15.
|
| [12] |
Garcia MA, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest. 2009; 119(9): 2613-2622.
|
| [13] |
Roy MG, Livraghi-Butrico A, Fletcher AA, et al. Muc5b is required for airway defence. Nature. 2014; 505(7483): 412-416.
|
| [14] |
Ermund A, Meiss LN, Rodriguez-Pineiro AM, et al. The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin. Biochem Biophys Res Commun. 2017; 492(3): 331-337.
|
| [15] |
Collaco AM, Jakab RL, Hoekstra NE, Mitchell KA, Brooks A, Ameen NA. Regulated traffic of anion transporters in mammalian Brunner's glands: a role for water and fluid transport. Am J Physiol Gastrointest Liver Physiol. 2013; 305(3): G258-G275.
|
| [16] |
Johansson ME, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016; 16(10): 639-649.
|
| [17] |
Gustafsson JK, Ermund A, Ambort D, et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J Exp Med. 2012; 209(7): 1263-1272.
|
| [18] |
Bahne E, Sun EWL, Young RL, et al. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight. 2018; 3(23): e93936.
|
| [19] |
Voetmann LM, Underwood CR, Rolin B, et al. In vitro cell cultures of Brunner's glands from male mouse to study GLP-1 receptor function. Am J Physiol Cell Physiol. 2022; 322(6): C1260-c1269.
|
| [20] |
Bang-Berthelsen CH, Holm TL, Pyke C, et al. GLP-1 induces barrier protective expression in Brunner's glands and regulates colonic inflammation. Inflamm Bowel Dis. 2016; 22(9): 2078-2097.
|
| [21] |
Chen EYT, Yang N, Quinton PM, Chin W-C. A new role for bicarbonate in mucus formation. Am J Physiol-Lung Cell Mol Physiol. 2010; 299(4): L542-L549.
|
| [22] |
Bang-Berthelsen CH, Holm TL, Pyke C, et al. GLP-1 induces barrier protective expression in Brunner's glands and regulates colonic inflammation. Inflamm Bowel Dis. 2016; 22(9): 2078-2097.
|
| [23] |
Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020; 18(7): e3000410.
|
| [24] |
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005; 102(43): 15545-15550.
|
| [25] |
Moore BA, Morris GP, Vanner S. A novel in vitro model of Brunner's gland secretion in the guinea pig duodenum. Am J Physiol Gastrointest Liver Physiol. 2000; 278(3): G477-G485.
|
| [26] |
Wright RD, Jennings MA, Florey HW, Lium R. The influence of nerves and drugs on secretion by the small intestine and an investigation of the enzymes in intestinal juice. Quart J expo Physiol. 1940; 30: 70-120.
|
| [27] |
Andersen DB, Grunddal KV, Pedersen J, et al. Using a reporter mouse to map known and novel sites of GLP-1 receptor expression in peripheral tissues of male mice. Endocrinology. 2020; 162(3): bqaa246.
|
| [28] |
Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014; 155(4): 1280-1290.
|
| [29] |
Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS. Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther. 2012; 35(4): 414-428.
|
| [30] |
Nishi T, Forgac M. The vacuolar (H+)-ATPases–nature's most versatile proton pumps. Nat Rev Mol Cell Biol. 2002; 3(2): 94-103.
|
| [31] |
Advani A, Kelly DJ, Cox AJ, et al. The (Pro) renin receptor: site-specific and functional linkage to the vacuolar H+-ATPase in the kidney. Hypertension. 2009; 54(2): 261-269.
|
| [32] |
García-Miranda P, Vázquez-Carretero MD, Sesma P, Peral MJ, Ilundain AA. Reelin is involved in the crypt-villus unit homeostasis. Tissue Eng Part A. 2013; 19(1-2): 188-198.
|
| [33] |
Tomkin GH. The intestine as a regulator of cholesterol homeostasis in diabetes. Atheroscler Suppl. 2008; 9(2): 27-32.
|
| [34] |
Alvarez F, Istomine R, Shourian M, et al. The alarmins IL-1 and IL-33 differentially regulate the functional specialisation of Foxp3+ regulatory T cells during mucosal inflammation. Mucosal Immunol. 2019; 12(3): 746-760.
|
| [35] |
Schiering C, Krausgruber T, Chomka A, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014; 513(7519): 564-568.
|
| [36] |
Buzzelli JN, Chalinor HV, Pavlic DI, et al. IL33 is a stomach Alarmin that initiates a skewed Th2 response to injury and infection. Cell Mol Gastroenterol Hepatol. 2015; 1(2): 203-221.e3.
|
| [37] |
Waddell A, Vallance JE, Hummel A, Alenghat T, Rosen MJ. IL-33 induces murine intestinal goblet cell differentiation indirectly via innate lymphoid cell IL-13 secretion. J Immunol. 2019; 202(2): 598-607.
|
| [38] |
Ämmälä C, Drury WJ, 3rdKnerr L, et al. Targeted delivery of antisense oligonucleotides to pancreatic β-cells. Sci Adv. 2018; 4(10): eaat3386.
|
| [39] |
Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015; 519(7541): 92-96.
|
| [40] |
Zaki H, Khan S. High-sugar diet predisposes colitis via promoting mucus degrading bacteria in the gut. J Immunol. 2021; 206(1 Supplement): 113.09-.09.
|
| [41] |
Tomas J, Mulet C, Saffarian A, et al. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc Nat Acad Sci USA. 2016; 113(40): E5934-e5943.
|
| [42] |
Ougaard MKE, Kvist PH, Jensen HE, Hess C, Rune I, Sondergaard H. Murine nephrotoxic nephritis as a model of chronic kidney disease. Int J Nephrol. 2018; 2018: 8424502.
|
| [43] |
Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020; 20(1): 40-54.
|
| [44] |
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56(7): 1761-1772.
|
| [45] |
Everett BM, Donath MY, Pradhan AD, et al. Anti-Inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol. 2018; 71(21): 2392-2401.
|
| [46] |
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017; 377(12): 1119-1131.
|
| [47] |
Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023; 389(24): 2221-2232.
|
| [48] |
Kosiborod MN, Abildstrøm SZ, Borlaug BA, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. 2023; 389(12): 1069-1084.
|
| [49] |
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375(4): 311-322.
|
| [50] |
Rodbard HW, Rosenstock J, Canani LH, et al. Oral semaglutide versus empagliflozin in patients with type 2 diabetes uncontrolled on metformin: the PIONEER 2 trial. Diabetes Care. 2019; 42(12): 2272-2281.
|
| [51] |
Wilding JPH, Batterham RL, Davies M, et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. Diabetes Obes Metab. 2022; 24(8): 1553-1564.
|
| [52] |
Holst JJ, Andersen DB, Grunddal KV. Actions of glucagon-like peptide-1 receptor ligands in the gut. Br J Pharmacol. 2021; 179(4): 727-742. n/a(n/a).
|
| [53] |
Thazhath SS, Marathe CS, Wu T, et al. The glucagon-like peptide 1 receptor agonist exenatide inhibits small intestinal motility, flow, transit, and absorption of glucose in healthy subjects and patients with type 2 diabetes: a randomized controlled trial. Diabetes. 2016; 65(1): 269-275.
|
| [54] |
Wang Z, Saha S, Van Horn S, et al. Gut microbiome differences between metformin- and liraglutide-treated T2DM subjects. Endocrinol, Diab Metab. 2018; 1(1): e00009.
|
| [55] |
Yusta B, Baggio LL, Koehler J, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes. 2015; 64(7): 2537-2549.
|
| [56] |
Chen G, Zhang Z, Adebamowo SN, et al. Common and rare exonic MUC5B variants associated with type 2 diabetes in Han Chinese. PLoS One. 2017; 12(3): e0173784.
|
| [57] |
Lisowska A, Wójtowicz J, Walkowiak J. Small intestine bacterial overgrowth is frequent in cystic fibrosis: combined hydrogen and methane measurements are required for its detection. Acta Biochim Pol. 2009; 56(4): 631-634.
|
| [58] |
Hallberg K, Grzegorczyk A, Larson G, Strandvik B. Intestinal permeability in cystic fibrosis in relation to genotype. J Pediatr Gastroenterol Nutr. 1997; 25(3): 290-295.
|
| [59] |
O'Brien S, Mulcahy H, Fenlon H, et al. Intestinal bile acid malabsorption in cystic fibrosis. Gut. 1993; 34(8): 1137-1141.
|
| [60] |
Dalzell AM, Freestone NS, Billington D, Heaf DP. Small intestinal permeability and orocaecal transit time in cystic fibrosis. Arch Dis Child. 1990; 65(6): 585-588.
|
| [61] |
Hendriks HJ, van Kreel B, Forget PP. Effects of therapy with lansoprazole on intestinal permeability and inflammation in young cystic fibrosis patients. J Pediatr Gastroenterol Nutr. 2001; 33(3): 260-265.
|
| [62] |
Reims A, Strandvik B, Sjövall H. Epithelial electrical resistance as a measure of permeability changes in pediatric duodenal biopsies. J Pediatr Gastroenterol Nutr. 2006; 43(5): 619-623.
|
| [63] |
De Lisle RC, Mueller R, Boyd M. Impaired mucosal barrier function in the small intestine of the cystic fibrosis mouse. J Pediatr Gastroenterol Nutr. 2011; 53(4): 371-379.
|
| [64] |
Blotas C, Férec C, Moisan S. Tissue-specific regulation of CFTR gene expression. Int J Mol Sci. 2023; 24(13): 10678.
|
| [65] |
Jonckheere N, Velghe A, Ducourouble MP, Copin MC, Renes IB, Van Seuningen I. The mouse Muc5b mucin gene is transcriptionally regulated by thyroid transcription factor-1 (TTF-1) and GATA-6 transcription factors. Febs j. 2011; 278(2): 282-294.
|
| [66] |
Leung L, Kang J, Rayyan E, et al. Decreased basal chloride secretion and altered cystic fibrosis transmembrane conductance regulatory protein, Villin, GLUT5 protein expression in jejunum from leptin-deficient mice. Diabetes Metab Syndr Obes. 2014; 7: 321-330.
|
| [67] |
Seguella L, Pesce M, Capuano R, et al. High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors. J Neuroinflam. 2021; 18(1): 115.
|
| [68] |
Takehara K, Tashima K, Takeuchi K. Alterations in duodenal bicarbonate secretion and mucosal susceptibility to acid in diabetic rats. Gastroenterology. 1997; 112(2): 418-428.
|
| [69] |
Cafferata EG, González-Guerrico AM, Giordano L, Pivetta OH, Santa-Coloma TA. Interleukin-1beta regulates CFTR expression in human intestinal T84 cells. Biochim Biophys Acta. 2000; 1500(2): 241-248.
|
| [70] |
Crites KS, Morin G, Orlando V, et al. CFTR knockdown induces proinflammatory changes in intestinal epithelial cells. J Inflamm (Lond). 2015; 12: 62.
|
| [71] |
Allen A, Flemstrom G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol. 2005; 288(1): C1-19.
|
| [72] |
Choi W, Choe S, Lin J, et al. Exendin-4 restores airway mucus homeostasis through the GLP1R-PKA-PPARγ-FOXA2-phosphatase signaling. Mucosal Immunol. 2020; 13(4): 637-651.
|
| [73] |
Nohara H, Nakashima R, Kamei S, et al. Intratracheal GLP-1 receptor agonist treatment up-regulates mucin via p38 and exacerbates emphysematous phenotype in mucus hypersecretory obstructive lung diseases. Biochem Biophys Res Commun. 2020; 524(2): 332-339.
|
| [74] |
Viby NE, Isidor MS, Buggeskov KB, Poulsen SS, Hansen JB, Kissow H. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology. 2013; 154(12): 4503-4511.
|
| [75] |
Baekkevold ES, Roussigné M, Yamanaka T, et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 2003; 163(1): 69-79.
|
| [76] |
Bonilla WV, Fröhlich A, Senn K, et al. The alarmin interleukin-33 drives protective antiviral CD8+T cell responses. Science. 2012; 335(6071): 984-989.
|
| [77] |
Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005; 23(5): 479-490.
|
| [78] |
Pichery M, Mirey E, Mercier P, et al. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33–LacZ gene trap reporter strain. J Immunol. 2012; 188(7): 3488-3495.
|
| [79] |
Shao D, Perros F, Caramori G, et al. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension. Biochem Biophys Res Commun. 2014; 451(1): 8-14.
|
| [80] |
Ali S, Mohs A, Thomas M, et al. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB–stimulated gene transcription. J Immunol. 2011; 187(4): 1609-1616.
|
| [81] |
Fu AKY, Hung K-W, Yuen MYF, et al. IL-33 ameliorates Alzheimer's disease-like pathology and cognitive decline. Proc Natl Acad Sci. 2016; 113(19): E2705-E2713.
|
| [82] |
Perman JC, Boström P, Lindbom M, et al. The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction. J Clin Invest. 2011; 121(7): 2625-2640.
|
| [83] |
Alexander A, Herz J, Calvier L. Reelin through the years: from brain development to inflammation. Cell Rep. 2023; 42(6): 112669.
|
| [84] |
Kounatidis D, Vallianou NG, Poulaki A, et al. ApoB100 and atherosclerosis: what's new in the 21st century? Metabolites. 2024; 14(2): 123.
|
| [85] |
Huang JK, Lee HC. Emerging evidence of pathological roles of very-low-density lipoprotein (VLDL). Int J Mol Sci. 2022; 23(8): 4300.
|
| [86] |
Wang N, Merits A, Veit M, et al. LDL receptor in alphavirus entry: structural analysis and implications for antiviral therapy. Nat Commun. 2024; 15(1): 4906.
|
| [87] |
Holm I, Ollo R, Panthier JJ, Rougeon F. Evolution of aspartyl proteases by gene duplication: the mouse renin gene is organized in two homologous clusters of four exons. Embo j. 1984; 3(3): 557-562.
|
| [88] |
Takahashi N, Lopez ML. Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol. 2005; 16(1): 125-132.
|
| [89] |
Vara E, Arias-Díaz J, Garcia C, Balibrea JL, Blázquez E. Glucagon-like peptide-1(7-36) amide stimulates surfactant secretion in human type II pneumocytes. Am J Respir Crit Care Med. 2001; 163(4): 840-846.
|
| [90] |
Voetmann LM, Rolin B, Kirk RK, Pyke C, Hansen AK. The intestinal permeability marker FITC-dextran 4 kDa should be dosed according to lean body mass in obese mice. Nutr Diab. 2023; 13(1): 1.
|
| [91] |
Zhao R, Watt AJ, Li J, et al. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol. 2005; 25(7): 2622-2631.
|
| [92] |
Colledge WH, Abella BS, Southern KW, et al. Generation and characterization of a delta F508 cystic fibrosis mouse model. Nat Genet. 1995; 10(4): 445-452.
|
| [93] |
Wang F, Flanagan J, Su N, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012; 14(1): 22-29.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.