Telomere–metabolism–immunity axis in sarcoma: Immune evasion mechanisms and therapeutic strategies

Ji-Yong Sung , June Hyuk Kim

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (10) : e70504

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (10) : e70504 DOI: 10.1002/ctm2.70504
REVIEW

Telomere–metabolism–immunity axis in sarcoma: Immune evasion mechanisms and therapeutic strategies

Author information +
History +
PDF

Abstract

Sarcomas are a heterogeneous group of mesenchymal malignancies with poor prognosis and limited response to standard therapies, including immune checkpoint inhibitors (ICIs). Tumour-intrinsic factors—such as telomere maintenance mechanisms (TMMs) and metabolic reprogramming—play central roles in driving immune evasion and therapeutic resistance. Telomerase activation and alternative lengthening of telomeres sustain replicative immortality while influencing the tumour immune microenvironment. In parallel, metabolic adaptations, including glutamine dependency and arginine auxotrophy, further suppress antitumour immunity. Together, TMMs and metabolism form an integrated axis that shapes immune modulation and treatment outcomes. Recent advances—ranging from telomerase-based vaccines and TMM-targeted immunotherapies to metabolic modulators combined with ICIs—demonstrate the translational promise of targeting this axis. This review synthesises current knowledge on telomere‒metabolism crosstalk in sarcomas, highlights its impact on immunotherapy response, and outlines future directions for biomarker-driven, combinatorial strategies to overcome resistance and improve patient outcomes.

Keywords

combinatorial strategy / immune evasion / immunotherapy / metabolic reprogramming / sarcoma / telomere maintenance mechanisms (TMMs)

Cite this article

Download citation ▾
Ji-Yong Sung, June Hyuk Kim. Telomere–metabolism–immunity axis in sarcoma: Immune evasion mechanisms and therapeutic strategies. Clinical and Translational Medicine, 2025, 15(10): e70504 DOI:10.1002/ctm2.70504

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sharaf R, Dexter XJ, Grady J, et al. A pan-sarcoma landscape of telomeric content shows that alterations in RAD51B and GID4 are associated with higher telomeric content. NPJ Genom Med.. 2023; 8(1): 26.

[2]

Sung J, Cheong J. Pan-cancer analysis of clinical relevance via telomere maintenance mechanism. Int J Mol Sci.. 2021; 22(20): 11101.

[3]

Huang J, Feng Y, Shi Y, et al. Telomeres and telomerase in Sarcoma disease and therapy. Int J Med Sci.. 2024; 21(11): 2065-2080.

[4]

Sung J, Lim H, Joung J, Park W. Pan-cancer analysis of alternative lengthening of telomere activity. Cancers (Basel).. 2020; 12(8): 2207.

[5]

Sung J, Cheong J. Alternative lengthening of telomeres is mechanistically linked to potential therapeutic vulnerability in the stem-like subtype of gastric cancer. Clin Transl Med.. 2021; 11(9): e561.

[6]

Sung J, Cheong J. New immunometabolic strategy based on cell type-specific metabolic reprogramming in the tumor immune microenvironment. Cells. 2022; 11(5): 768

[7]

Liu L, Hao Z, Yang X, Li Y, Wang S, Li L. Metabolic reprogramming in T cell senescence: a novel strategy for cancer immunotherapy. Cell Death Discov. 2025; 11(1): 161.

[8]

Sung J, Cheong J. Pan-cancer analysis reveals distinct metabolic reprogramming in different epithelial‒mesenchymal transition activity states. Cancers (Basel). 2021; 13(8): 1778

[9]

Arner E, Rathmell J. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 2023; 41(3): 421-433.

[10]

Eastley N, Ottolini B, Garrido C, et al., Telomere maintenance in soft tissue sarcomas. J Clin Pathol. 2017; 70(5): 371-377.

[11]

Pierpoint M, Floyd W, Wisdom AJ, et al., Loss of function of Atrx recapitulates phenotypes of alternative lengthening of telomeres in a primary mouse model of sarcoma. iScience. 2025; 28(5): 112357.

[12]

Huang K, Han Y, Chen Y, Shen H, Zeng S, Cai C. Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy. Mol Cancer. 2025; 24(1): 7.

[13]

Liu C, Yang L, Gao T, Yuan X, Bajink O, Wang K. A mini-review-cancer energy reprogramming on drug resistance and immune response. Transl Oncol. 2024; 49: 102099.</bib

[14]

Sung J, Lee J. Telomere maintenance mechanism subtype reveals different immune activity in vestibular schwannoma. J Neurooncol. 2023; 165(1): 113-126.

[15]

Lee J, Jeng Y, Liau J, Tsai J, Hsu H, Yang C. Alternative lengthening of telomeres and loss of ATRX are frequent events in pleomorphic and dedifferentiated liposarcomas. Mod Pathol. 2015; 28(8): 1064-1073.

[16]

Liau J, Lee J, Tsai J, et al., Comprehensive screening of alternative lengthening of telomeres phenotype and loss of ATRX expression in sarcomas. Mod Pathol. 2015; 28(12): 1545-1554.

[17]

Ferreira MSV, Sørensen MD, Pusch S, et al., Alternative lengthening of telomeres is the major telomere maintenance mechanism in astrocytoma with isocitrate dehydrogenase 1 mutation. J Neurooncol. 2020; 147(1): 1-14.

[18]

Dugage MR, Nassif EF, Italiano A, Bahleda R. Improving immunotherapy efficacy in soft-tissue sarcomas: a biomarker driven and histotype tailored review. Front Immunol. 2021; 12: 775761.

[19]

Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017; 14(2): 115-128.

[20]

Kunieda J, Yamashita K, Togashi Y, et al., High prevalence of TERT aberrations in myxoid liposarcoma: TERT reactivation may play a crucial role in tumorigenesis. Cancer Sci. 2022; 113(3): 1078-1089.

[21]

Cheng Q, Yang W, Raimondi SC, Pui C, Relling M V, Evans WE. Karyotypic abnormalities create discordance of germline genotype and cancer cell phenotypes. Nat Genet. 2005; 37(8): 878-882.

[22]

Blasco MA, Lee H, Hande M, et al., Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997; 91(1): 25-34.

[23]

Lazarus J, Mather KA, Thalamuthu A, Kwok JB. Genetic factors and epigenetic mechanisms of longevity: current perspectives. Epigenomics. 2015; 7(8): 1339-1349.

[24]

Le Targat R, Lorini L, Le Coq Y, et al., Experimental realization of an optical second with strontium lattice clocks. Nat Commun. 2013; 4: 2109.

[25]

Koschmann C, Calinescu A, Nunez FJ, et al., ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci Transl Med. 2016; 8(328): 328ra28.

[26]

Ren X, Chao T, Tang Z, Ma R, Li Z, et al., Alternative lengthening of telomeresphenotype and loss of ATRX expression in sarcomas. Oncol Lett. 2018; 15(5): 7489-7496.

[27]

Lovejoy CA, Li W, Reisenweber S, et al., Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 2012; 8(7): e1002772.

[28]

Zhang Y, Chen Y, Papakonstantinou A, Tsagkozis P, Linder-Stragliotto C, Haglund F. Evaluation of PD-L1 expression in undifferentiated pleomorphic sarcomas, liposarcomas and chondrosarcomas. Biomolecules. 2022; 12(2): 292

[29]

Palmerini E, Pousa AL, Grignani G, et al., Nivolumab and sunitinib in patients with advanced bone sarcomas: a multicenter, single-arm, phase 2 trial. Cancer. 2025; 131(1): e35628.

[30]

Ohali A, Avigad S, Cohen I, et al., Association between telomerase activity and outcome in patients with nonmetastatic Ewing family of tumors. J Clin Oncol.. 2003; 21(20): 3836-3843.

[31]

Avigad S, Naumov I, Ohali A, et al., Short telomeres: a novel potential predictor of relapse in Ewing sarcoma. Clin Cancer Res.. 2007; 13(19): 5777-5783.

[32]

O'Donoghue J, Freeman F. Make it STING: nanotechnological approaches for activating cGAS/STING as an immunomodulatory node in osteosarcoma. Front Immunol.. 2024; 15: 1403538

[33]

Yiong CS, Lin TP, Lim VY, Toh TB, Yang VS. Biomarkers for immune checkpoint inhibition in sarcomas—are we close to clinical implementation? Biomarker Res. 2023; 11(1): 75.

[34]

Oliva-Ramirez J, Milewski D, Banks L, et al., Future directions and priorities for cellular therapy in sarcoma: a report from the strategic advances in sarcoma science cell therapy breakout. Cancers. 2025; 17(18): 3068

[35]

Wainsztein V, Chen T. When molecular-targeted agents meet immunotherapy: the opportunities for soft tissue sarcoma. J Immunother Precis Oncol. 2020; 3(2): 69-82.

[36]

Movva S, Seier K, Avutu V, et al., Histology-specific clinical trial of lenvatinib and pembrolizumab in patients with sarcoma. Clin Cancer Res. 2024; 30(24): 5612-5619.

[37]

Kasago IS, Chatila WK, Lezcano CM, et al., Undifferentiated and dedifferentiated metastatic melanomas masquerading as soft tissue sarcomas: mutational signature analysis and immunotherapy response. Mod Pathol. 2023; 36(8): 100165.

[38]

Xu Y, He L, Fu Q, Hu J. Metabolic reprogramming in the tumor microenvironment with immunocytes and immune checkpoints. Front Oncol. 2021; 11: 759015.

[39]

Taddei ML, Pietrovito L, Leo A, Chiarugi P. Lactate in sarcoma microenvironment: much more than just a waste product. Cells. 2020; 9(2): 510

[40]

Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep. 2024; 43(12): 115064.

[41]

Zheng Y, Xu R, Chen X, et al., Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis. 2024; 15(10): 775.

[42]

Guerra L, Bonetti L, Brenner D. Metabolic modulation of immunity: a new concept in cancer immunotherapy. Cell Rep. 2020; 32(1): 107848.

[43]

Yiong CS, Lin TP, Lim VY, Toh TB, Yang VS. Biomarkers for immune checkpoint inhibition in sarcomas—are we close to clinical implementation? Biomark Res. 2023; 11(1): 75.

[44]

Martin-Broto J, Hindi N, Grignani G, et al., Nivolumab and sunitinib combination in advanced soft tissue sarcomas: a multicenter, single-arm, phase Ib/II trial. J Immunother Cancer. 2020; 8(2): e001561

[45]

D'Angelo SP, Mahoney MR, Van Tine BA, et al., Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018; 19(3): 416-426.

[46]

Ishihara S, Yamada Y, Iwasaki T, et al., PD-L1 and IDO-1 expression in undifferentiated pleomorphic sarcoma: the associations with tumor infiltrating lymphocytes, dMMR and HLA class I. Oncol Rep. 2021; 45(1): 379-389.

[47]

Miallot R, Galland F, Millet V, Blay J, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol. 2021; 14(1): 114.

[48]

Floyd W, Pierpoint M, Su C, et al., Atrx deletion impairs CGAS/STING signaling and increases sarcoma response to radiation and oncolytic herpesvirus. J Clin Invest. 2023; 133(13): e149310

[49]

Navas L, Carnero A. NAD(+) metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther. 2021; 6(1): 2.

[50]

Darmusey L, Pérot G, Thébault N, et al., ATRX alteration contributes to tumor growth and immune escape in pleomorphic sarcomas. Cancers (Basel). 2021; 13(9): 2151

[51]

Wong LH, McGhie JD, Sim M, et al., ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 2010; 20(3): 351-360.

[52]

Udugama M, M Chang FT, Lyn Chan F, et al., Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res. 2015; 43(21): 10227-10237.

[53]

Lanzetti L. Oncometabolites at the crossroads of genetic, epigenetic and ecological alterations in cancer. Cell Death Differ. 2024; 31(12): 1582-1594.

[54]

Gao Y, Zhang S, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience. 2024; 27(12): 111359.

[55]

Ali J, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int. 2023; 23(1): 197.

[56]

Sung J, Kim J, Kim Y. Alternative lengthening of telomeres confers favorable prognosis in chondrosarcomas. J Transl Med. 2025; 23(1): 536.

[57]

Peyraud F, Italiano A. Combined PARP inhibition and immune checkpoint therapy in solid tumors. Cancers (Basel). 2020; 12(6): 1502

[58]

Nanamori H, Sawada Y. Epigenetic modification of PD-1/PD-L1-mediated cancer immunotherapy against melanoma. Int J Mol Sci. 2022; 23(3): 1119

[59]

Zhang H, Pang Y, Yi L, et al., Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics. 2025; 17(1): 51.

[60]

Emran AA, Chatterjee A, Rodger EJ, et al., Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. 2019; 40(4): 328-344.

[61]

Chen X, Pan X, Zhang W. et al., Epigenetic strategies synergize with PD-L1/PD-1 targeted cancer immunotherapies to enhance antitumor responses. Acta Pharm Sin B. 2020; 10(5): 723-733.

[62]

Ying H, Li Z, Li M, Liu W. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front Endocrinol (Lausanne). 2023; 14: 1217669.

[63]

Wu C, Tan J, Shen H, et al., Exploring the relationship between metabolism and immune microenvironment in osteosarcoma based on metabolic pathways. J Biomed Sci. 2024; 31(1): 4.

[64]

Recine F, Vanni S, Bongiovanni A, et al., Clinical and translational implications of immunotherapy in sarcomas. Front Immunol. 2024; 15: 1378398.

[65]

Zheng S, Wang W, Shen L, Yao Y, Xia W, Ni C. Tumor battlefield within inflamed, excluded or desert immune phenotypes: the mechanisms and strategies. Exp Hematol Oncol. 2024; 13(1): 80.

[66]

Lee P, Malik D, Perkons N, et al., Targeting glutamine metabolism slows soft tissue sarcoma growth. Nat Commun. 2020; 11(1): 498.

[67]

Baylie T, Jemal M, Baye G, et al., The role of telomere and telomerase in cancer and novel therapeutic target: narrative review. Front Oncol. 2025; 15: 1542930.

[68]

Shou S, Maolan A, Zhang D, et al., Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol. 2025; 14(1): 8.

[69]

Heaphy CM, Subhawong AP, Hong S, et al., Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol. 2011; 179(4): 1608-1615.

[70]

de Nonneville A, Reddel R. Alternative lengthening of telomeres is not synonymous with mutations in ATRX/DAXX. Nat Commun. 2021; 12(1): 1552.

[71]

Koelsche C, Renner M, Hartmann W, et al., TERT promoter hotspot mutations are recurrent in myxoid liposarcomas but rare in other soft tissue sarcoma entities. J Exp Clin Cancer Res. 2014; 33(1): 33.

[72]

Ackermann S, Fischer M. Telomere maintenance in pediatric cancer. Int J Mol Sci. 2019; 20(23): 5836

[73]

Patel R, Cooper DE, Kadakia KT, et al., Targeting glutamine metabolism improves sarcoma response to radiation therapy in vivo. Commun Biol. 2024; 7(1): 608.

[74]

Ren L, Ruiz-Rodado V, Dowdy T, et al., Glutaminase-1 (GLS1) inhibition limits metastatic progression in osteosarcoma. Cancer Metab. 2020; 8: 4.

[75]

Gröbner SN, Worst BC, Weischenfeldt J, et al., The landscape of genomic alterations across childhood cancers. Nature. 2018; 555(7696): 321-327.

[76]

Tawbi HA, Burgess M, Bolejack V, et al., Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017; 18(11): 1493-1501.

[77]

Keung EZ, Burgess M, Salazar R, et al., Correlative analyses of the SARC028 trial reveal an association between sarcoma-associated immune infiltrate and response to pembrolizumab. Clin Cancer Res. 2020; 26(6): 1258-1266.

[78]

D'Angelo SP, Araujo DM, Abdul Razak AR, et al., Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial. Lancet. 2024; 403(10435): 1460-1471.

[79]

Barnett KK, Johnson AR, Das A, et al., FDA approval summary: afamitresgene autoleucel for adults with HLA-restricted, MAGE-A4-positive unresectable or metastatic synovial sarcoma after prior chemotherapy. Clin Cancer Res. 2025; 31(15): 3112-3117.

[80]

Hong DS, Van Tine BA, Biswas S, et al., Autologous T cell therapy for MAGE-A4(+) solid cancers in HLA-A*02(+) patients: a phase 1 trial. Nat Med. 2023; 29(1): 104-114.

[81]

Ellingsen EB, O'Day S, Mezheyeuski A, et al., Clinical activity of combined telomerase vaccination and pembrolizumab in advanced melanoma: results from a phase I trial. Clin Cancer Res. 2023; 29(16): 3026-3036.

[82]

Brunsvig PF, Aamdal S, Gjertsen MK, et al., Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2006; 55(12): 1553-1564.

[83]

Vonderheide RH, Kraynyak KA, Shields AF, et al., Phase 1 study of safety, tolerability and immunogenicity of the human telomerase (hTERT)-encoded DNA plasmids INO-1400 and INO-1401 with or without IL-12 DNA plasmid INO-9012 in adult patients with solid tumors. J Immunother Cancer. 2021; 9(7): e003019

[84]

Fuchs B, Inwards C, Scully SP, Janknecht R. hTERT Is highly expressed in Ewing's sarcoma and activated by EWS-ETS oncoproteins. Clin Orthop Relat Res. 2004 (426): 64-68.

[85]

Dillard P, Köksal H, Maggadottir SM, et al., Targeting telomerase with an HLA class II-restricted TCR for cancer immunotherapy. Mol Ther. 2021; 29(3): 1199-1213.

[86]

Sandri S, Bobisse S, Moxley K, et al., Feasibility of telomerase-specific adoptive T-cell therapy for B-cell chronic lymphocytic leukemia and solid malignancies. Cancer Res. 2016; 76(9): 2540-2551.

[87]

Frolkis M, Fischer MB, Wang Z, Lebkowski JS, Chiu C, Majumdar AS. Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors. Cancer Gene Ther. 2003; 10(3): 239-249.

[88]

Richter F, Paget C, Apetoh L. STING-driven activation of T cells: relevance for the adoptive cell therapy of cancer. Cell Stress. 2023; 7(11): 95-104.

[89]

Verma S, Budhu S, Serganova I, et al., Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models. J Clin Invest. 2024; 134(17): e177606

[90]

Gouda M, Voss M, Tawbi H, et al., A phase I/II study of the safety and efficacy of telaglenastat (CB-839) in combination with nivolumab in patients with metastatic melanoma, renal cell carcinoma, and non-small-cell lung cancer. ESMO Open. 2025; 10(5): 104536.

[91]

Berclaz LM, Di Gioia D, Jurinovic V, et al., LDH and hemoglobin outperform systemic inflammatory indices as prognostic factors in patients with soft tissue sarcoma undergoing neoadjuvant treatment. BMC Cancer. 2025; 25(1): 496.

[92]

Li Z, Cui J. Targeting the lactic acid metabolic pathway for antitumor therapy. Mol Ther Oncolytics. 2023; 31: 100740.

[93]

Du M, Yu T, Zhan Q, et al., Development of a novel lactate dehydrogenase A inhibitor with potent antitumor activity and immune activation. Cancer Sci. 2022; 113(9): 2974-2985.

[94]

Rellinger EJ, Craig BT, Alvarez AL, et al., FX11 inhibits aerobic glycolysis and growth of neuroblastoma cells. Surgery. 2017; 161(3): 747-752.

[95]

Toulmonde M, Guegan J, Spalato-Ceruso M, et al., Reshaping the tumor microenvironment of cold soft-tissue sarcomas with oncolytic viral therapy: a phase 2 trial of intratumoral JX-594 combined with avelumab and low-dose cyclophosphamide. Mol Cancer. 2024; 23(1): 38.

[96]

Monge C, Xie C, Myojin Y, et al., Phase I/II study of PexaVec in combination with immune checkpoint inhibition in refractory metastatic colorectal cancer. J Immunother Cancer. 2023; 11(2): e005640

[97]

Nassiri F, Patil V, Yefet LS, et al., Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med. 2023; 29(6): 1370-1378.

[98]

Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther. 2022; 7(1): 117.

[99]

Kim M, Nitschké M, Sennino B, et al., Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms. Cancer Res. 2018; 78(4): 922-937.

[100]

Martinez-Velez N, Xipell E, Jauregui P, et al., The oncolytic adenovirus Delta24-RGD in combination with cisplatin exerts a potent anti-osteosarcoma activity. J Bone Miner Res. 2014; 29(10): 2287-2296.

[101]

Daskalakis M, Brocks D, Sheng Y, et al., Reactivation of endogenous retroviral elements via treatment with DNMT- and HDAC-inhibitors. Cell Cycle. 2018; 17(7): 811-822.

[102]

Gualandi N, Minisini M, Bertozzo A, Brancolini C. Dissecting transposable elements and endogenous retroviruses upregulation by HDAC inhibitors in leiomyosarcoma cells: implications for the interferon response. Genomics. 2024; 116(5): 110909.

[103]

Roussos Torres ET, Rafie C, Wang C, et al., Phase I study of entinostat and nivolumab with or without ipilimumab in advanced solid tumors (ETCTN-9844). Clin Cancer Res. 2021; 27(21): 5828-5837.

[104]

Jansz N, Faulkner G. Endogenous retroviruses in the origins and treatment of cancer. Genome Biol. 2021; 22(1): 147.

[105]

Tang F, Tie Y, Wei Y, Tu C, Wei X. Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochim Biophys Acta Rev Cancer. 2021; 1876(2): 188606.

[106]

Liu Z, Ren Y, Weng S, Xu H, Li L, Han X. A new trend in cancer treatment: the combination of epigenetics and immunotherapy. Front Immunol. 2022; 13: 809761.

[107]

Lv Y, Li Z, Liu S, et al., Metabolic checkpoints in immune cell reprogramming: rewiring immunometabolism for cancer therapy. Mol Cancer. 2025; 24(1): 210.

[108]

Vahidi S, Touchaei AZ. Telomerase-based vaccines: a promising frontier in cancer immunotherapy. Cancer Cell Int. 2024; 24(1): 421.

[109]

Liu M, Zhang Y, Jian Y, et al., The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis. 2024; 15(1): 90.

[110]

Zhang H, Li S, Wang D, et al., Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment. Biomark Res. 2024; 12(1): 96.

[111]

Pålsson-McDermott EM, O'Neill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res, 2020; 30(4): 300-314.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/