Exploring the mechanisms of mutual influence between lactylation and macrophage polarization in the context of disease

Houhua Guo , Nannan Luan , Jian Gao , Xiaoao Pang , Jianlei Bi , Liancheng Zhu

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (11) : e70499

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (11) : e70499 DOI: 10.1002/ctm2.70499
REVIEW

Exploring the mechanisms of mutual influence between lactylation and macrophage polarization in the context of disease

Author information +
History +
PDF

Abstract

Background: Lactylation, a post-translational alteration facilitated by lactic acidderived lactyl-CoA, has emerged as an epigenetic regulator that alters gene expression in macrophages. Emerging data situates lactylation at the nexus of metabolic flux and immune cell destiny, especially in tumor and inflammatory microenvironments.

Main text: Lactylation is significantly linked to tumor progression and the polarization of macrophages towards the M2 phenotype, a condition that exacerbates cancer and associated inflammation. Modulating lactylation levels can alter the M1/M2 balance, hence affecting the progression of cancer and inflammatory illnesses. These findings identify lactylation as aregulator that can either suppress or enhance tumor development and the related inflammatory response, contingent upon the context and degree of the change.

Conclusion: This review systematically elucidates the role of lactylation in directing macrophage polarization in the context of cancer and associated inflammation. The aggregated data suggest that targeting lactylation constitutes an innovative therapeutic strategy for regulating immune cell activity and managing the advancement of cancer and related inflammatory conditions.

Keywords

immunity / lactylation / macrophages / post-translational modifications / tumours

Cite this article

Download citation ▾
Houhua Guo, Nannan Luan, Jian Gao, Xiaoao Pang, Jianlei Bi, Liancheng Zhu. Exploring the mechanisms of mutual influence between lactylation and macrophage polarization in the context of disease. Clinical and Translational Medicine, 2025, 15(11): e70499 DOI:10.1002/ctm2.70499

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Y, Hong T, Wang S, et al. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev. 2017; 46(10): 2844-2872.

[2]

Wang H, Yang L, Liu M, et al. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 2023; 30(4): 529-547.

[3]

Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022; 13(12): 877-919.

[4]

Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019; 574(7779): 575.

[5]

Ebert T, Tran N, Schurgers L, et al. Ageing—oxidative stress, PTMs and disease. Mol Aspects Med. 2022; 86: 101099.

[6]

Chen Y, Zhang X. Pivotal regulators of tissue homeostasis and cancer: macrophages. Exp Hematol Oncol. 2017; 6: 23.

[7]

Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses. Front Immunol. 2019; 10: 1462.

[8]

Zhang C, Yang M, Ericsson AC. Function of macrophages in disease: current understanding on molecular mechanisms. Front Immunol. 2021; 12: 620510.

[9]

Galván-Peña S, O'Neill LAJ. Metabolic reprograming in macrophage polarization. Front Immunol. 2014; 5: 420.

[10]

Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020; 2(7): 566-571.

[11]

Sun S, Li H, Chen J, et al. Lactic acid: no longer an inert and end-product of glycolysis. Physiology. 2017; 32(6): 453-463.

[12]

Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018; 27(4): 757-785.

[13]

Fan H, Yang F, Xiao Z, et al. Lactylation: novel epigenetic regulatory and therapeutic opportunities. Am J Physiol Endocrinol Metab. 2023; 324(4): E330-E338.

[14]

Jun-Kyu B. Tumor lactic acid: a potential target for cancer therapy. Arch Pharm Res. 2023; 46(2): 90-110.

[15]

Luo Y, Li L, Chen X, et al. Effects of lactate in immunosuppression and inflammation: progress and prospects. Int Rev Immunol. 2022; 41(1): 19-29.

[16]

Zhu W, Guo S, Sun J, et al. Lactate and lactylation in cardiovascular diseases: current progress and future perspectives. Metab Clin Exp. 2024; 158: 155957.

[17]

Hoque R, Farooq A, Ghani A, et al. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014; 146(7): 1763-1774.

[18]

Dai X, Lv X, Thompson EW, et al. Histone lactylation: epigenetic mark of glycolytic switch. Trends Genet. 2022; 38(2): 124-127.

[19]

Yang Z, Zheng Y, Gao Q. Lysine lactylation in the regulation of tumor biology. Trends Endocrinol Metab. 2024; 35(8): 720-731.

[20]

Wan N, Wang N, Yu S, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat Methods. 2022; 19(7): 854-864.

[21]

Yang K, Fan M, Wang X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022; 29(1): 133-146.

[22]

Yang D, Yin J, Shan L, et al. Identification of lysine-lactylated substrates in gastric cancer cells. iScience. 2022; 25(7): 104630.

[23]

Wu X. In-depth discovery of protein lactylation in hepatocellular carcinoma. Proteomics. 2023; 23(9): e2300003.

[24]

Yang Z, Yan C, Ma J, et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 2023; 5(1): 61-79.

[25]

Zhang N, Jiang N, Yu L, et al. Protein lactylation critically regulates energy metabolism in the protozoan parasite Trypanosoma brucei. Front Cell Dev Biol. 2021; 9: 719720.

[26]

Yin D, Jiang N, Cheng C, et al. Protein lactylation and metabolic regulation of the zoonotic parasite Toxoplasma gondii. Genomics Proteomics Bioinformatics. 2023; 21(6): 1163-1181.

[27]

An D, Song L, Li Y, et al. Comprehensive analysis of lysine lactylation in Frankliniella occidentalis. Front Genet. 2022; 13: 1014225.

[28]

Li Z, Gong T, Wu Q, et al. Lysine lactylation regulates metabolic pathways and biofilm formation in Streptococcus mutans. Sci Signal. 2023; 16(801): eadg1849.

[29]

Wang J, Ouyang L, Wei L. Novel insight of nitrogen deprivation affected lipid accumulation by genome-wide lactylation in Nannochloropsis oceanica. J Agric Food Chem. 2023; 71(26): 10107-10123.

[30]

Yao Y, Bade R, Li G, et al. Global-scale profiling of differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia–reperfusion injury rats. Cell Mol Neurobiol. 2023; 43(5): 1989-2004.

[31]

Zhu J, Guo W, Lan Y. Global analysis of lysine lactylation of germinated seeds in wheat. Int J Mol Sci. 2023; 24(22): 16195.

[32]

Wu Q, Li Z, Yang J, et al. Deciphering the atlas of post-translational modification in sugarcane. J Agric Food Chem. 2023; 71(26): 10004-10017.

[33]

Meng X, Baine JM, Yan T, et al. Comprehensive analysis of lysine lactylation in rice (Oryza sativa) grains. J Agric Food Chem. 2021; 69(29): 8287-8297.

[34]

Shi Z, Zhou M, Song W, et al. Trash to treasure: lactate and protein lactylation in maize root impacts response to drought. Sci China Life Sci. 2023; 66(8): 1903-1914.

[35]

Horvat A, Zorec R, Vardjan N. Lactate as an astroglial signal augmenting aerobic glycolysis and lipid metabolism. Front Physiol. 2021; 12: 735532.

[36]

Li J, Ma P, Liu Z, et al. l- and d-Lactate: unveiling their hidden functions in disease and health. Cell Commun Signal. 2025; 23(1): 134.

[37]

Ichihashi K, Umezawa M, Ueya Y, et al. Effect of the enantiomeric structure of hydrophobic polymers on the encapsulation properties of a second near infrared (NIR-II) fluorescent dye for in vivo deep imaging. RSC Adv. 2022; 12(3): 1310-1318.

[38]

Zegre M, Barros J, Ribeiro IAC, et al. Poly(DL-lactic acid) scaffolds as a bone targeting platform for the co-delivery of antimicrobial agents against S. aureus-C. albicans mixed biofilms. Int J Pharm. 2022; 622: 121832.

[39]

Zhang D, Gao J, Zhu Z, et al. Lysine l-lactylation is the dominant lactylation isomer induced by glycolysis. Nat Chem Biol. 2025; 21(1): 91-99.

[40]

Moreno-Yruela C, Bæk M, Monda F, et al. Chiral posttranslational modification to lysine ε-amino groups. Acc Chem Res. 2022; 55(10): 1456-1466.

[41]

Niu Z, Chen C, Wang S, et al. HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription. Nat Commun. 2024; 15(1): 3561.

[42]

Gao X, Pang C, Fan Z, et al. Regulation of newly identified lysine lactylation in cancer. Cancer Lett. 2024; 587: 216680.

[43]

Fan Z, Liu Z, Zhang N, et al. Identification of SIRT3 as an eraser of H4K16la. iScience. 2023; 26(10): 107757.

[44]

Hu X, Huang X, Yang Y, et al. Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader. Nucleic Acids Res. 2024; 52(10): 5529-5548.

[45]

Wagner GR, Bhatt DP, O'Connell TM, et al. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 2017; 25(4): 823-837.e8.

[46]

Gaffney DO, Jennings EQ, Anderson CC, et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Biol. 2020; 27(2): 206-213.e6.

[47]

Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014; 14(6): 392-404.

[48]

Schulz C, Perdiguero EG, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012; 336(6077): 86-90.

[49]

Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenet Chromatin. 2025; 18(1): 16.

[50]

Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Front Immunol. 2019; 10: 1084.

[51]

Peng Y, Zhou M, Yang H, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases. Mediators Inflamm. 2023; 2023: 8821610.

[52]

Thapa B, Lee K. Metabolic influence on macrophage polarization and pathogenesis. BMB Rep. 2019; 52(6): 360.

[53]

Bosco MC. Macrophage polarization: reaching across the aisle? J Allergy Clin Immunol. 2019; 143(4): 1348-1350.

[54]

Pourcet B, Pineda-Torra I. Transcriptional regulation of macrophage arginase 1 expression and its role in atherosclerosis. Trends Cardiovasc Med. 2013; 23(5): 143-152.

[55]

Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ Res. 2016; 119(3): 414-417.

[56]

Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014; 41(1): 14-20.

[57]

Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011; 11(11): 723-737.

[58]

Wang S, Liu G, Li Y, et al. Metabolic reprogramming induces macrophage polarization in the tumor microenvironment. Front Immunol. 2022; 13: 840029.

[59]

Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018; 233(9): 6425-6440.

[60]

Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016; 17(3): 684-696.

[61]

Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 2022; 13: 888713.

[62]

Zhou HC, Yan XY, Yu WW, et al. Lactic acid in macrophage polarization: the significant role in inflammation and cancer. Int Rev Immunol. 2022; 41(1): 4-18.

[63]

Ivashkiv LB. The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol. 2020; 20(2): 85-86.

[64]

Diskin C, Ryan TAJ, O'Neill LAJ. Modification of proteins by metabolites in immunity. Immunity. 2021; 54(1): 19-31.

[65]

Shi W, Cassmann TJ, Bhagwate AV, et al. Lactic acid induces transcriptional repression of macrophage inflammatory response via histone acetylation. Cell Rep. 2024; 43(2): 113746.

[66]

Dichtl S, Lindenthal L, Zeitler L, et al. Lactate and IL6 define separable paths of inflammatory metabolic adaptation. Sci Adv. 2021; 7(26): eabg3505.

[67]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-674.

[68]

Qu J, Li P, Sun Z. Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol. 2023; 14: 1284344.

[69]

Sun K, Zhang X, Shi J, et al. Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma. J Clin Investig. 2025; 135(7): e187024.

[70]

Pan Z, Chen J, Xu T, et al. VSIG4+ tumor-associated macrophages mediate neutrophil infiltration and impair antigen-specific immunity in aggressive cancers through epigenetic regulation of SPP1. J Exp Clin Cancer Res. 2025; 44(1): 45.

[71]

Zhou J, Ma X, Liu X, et al. The impact of histone lactylation on the tumor microenvironment and metabolic pathways and its potential in cancer therapy. Genes Genom. 2024; 46(9): 991-1011.

[72]

Xie Y, Hu H, Liu M, et al. The role and mechanism of histone lactylation in health and diseases. Front Genet. 2022; 13: 949252.

[73]

Arneth B. Tumor microenvironment. Medicina. 2019; 56(1): 15.

[74]

Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science. 2017; 357(6348): eaal2380.

[75]

Liu J, Cao X. Glucose metabolism of TAMs in tumor chemoresistance and metastasis. Trends Cell Biol. 2023; 33(11): 967-978.

[76]

Dowling CM, Zhang H, Chonghaile TN, et al. Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer. 2021; 1875(1): 188462.

[77]

Fang X, Zhao P, Gao S, et al. Lactate induces tumor-associated macrophage polarization independent of mitochondrial pyruvate carrier-mediated metabolism. Int J Biol Macromol. 2023; 237: 123810.

[78]

Hao B, Dong H, Xiong R, et al. Identification of SLC2A1 as a predictive biomarker for survival and response to immunotherapy in lung squamous cell carcinoma. Comput Biol Med. 2024; 171: 108183.

[79]

Song Z, Wu Y, Yang J, et al. Progress in the treatment of advanced gastric cancer. Tumor Biol. 2017; 39(7): 1010428317714626.

[80]

Zhao Y, Jiang J, Zhou P, et al. H3K18 lactylation-mediated VCAM1 expression promotes gastric cancer progression and metastasis via AKT-mTOR-CXCL1 axis. Biochem Pharmacol. 2024; 222: 116120.

[81]

Yang H, Yang S, He J, et al. Glucose transporter 3 (GLUT3) promotes lactylation modifications by regulating lactate dehydrogenase a (LDHA) in gastric cancer. Cancer Cell Int. 2023; 23(1): 303.

[82]

Xie B, Lin J, Chen X, et al. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer. 2023; 22: 151.

[83]

Li XM, Yang Y, Jiang FQ, et al. Histone lactylation inhibits RARγ expression in macrophages to promote colorectal tumorigenesis through activation of TRAF6-IL-6-STAT3 signaling. Cell Rep. 2024; 43(2): 113688.

[84]

Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022; 82(9): 1660-1677.e10.

[85]

Li W, Zhou C, Yu L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 2024; 20(1): 114-130.

[86]

Zhou J, Xu W, Wu Y, et al. GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via hippo pathway. Oncogene. 2023; 42(45): 3319-3330.

[87]

Wang L, Li S, Luo H, et al. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 2022; 41(1): 303.

[88]

Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021; 22(1): 85.

[89]

Gu X, Zhuang A, Yu J, et al. Histone lactylation-boosted ALKBH3 potentiates tumor progression and diminished promyelocytic leukemia protein nuclear condensates by m1A demethylation of SP100A. Nucleic Acids Res. 2024; 52(5): 2273-2289.

[90]

Chao J, Chen GD, Huang ST, et al. High histone H3K18 lactylation level is correlated with poor prognosis in epithelial ovarian cancer. Neoplasma. 2024; 71(04): 319-332.

[91]

Sun J, Feng Q, He Y, et al. Lactate activates CCL18 expression via H3K18 lactylation in macrophages to promote tumorigenesis of ovarian cancer. Acta Biochim Biophys Sinica. 2024; 56(9): 1373-1386.

[92]

Huang C, Xue L, Lin X, et al. Histone lactylation-driven GPD2 mediates M2 macrophage polarization to promote malignant transformation of cervical cancer progression. DNA Cell Biol. 2024; 43(12): 605-618.

[93]

Zhu L, Tang N, Hang H, et al. Loss of claudin-1 incurred by DNMT aberration promotes pancreatic cancer progression. Cancer Lett. 2024; 586: 216611.

[94]

Li F, Si W, Xia L, et al. Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer. 2024; 23(1): 90.

[95]

Liu Y, Liu P, Duan S, et al. CTCF enhances pancreatic cancer progression via FLG-AS1-dependent epigenetic regulation and macrophage polarization. Cell Death Differ. 2025; 32(4): 745-762.

[96]

Barahman M. Renal cell carcinoma: an overview of the epidemiology, diagnosis, and treatment. G Ital Nefrol. 2022; 3(3): 2022-vol3.

[97]

Yang J, Luo L, Zhao C, et al. A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression. Int J Biol Sci. 2022; 18(8): 3470-3483.

[98]

Hou X, Ouyang J, Tang L, et al. KCNK1 promotes proliferation and metastasis of breast cancer cells by activating lactate dehydrogenase a (LDHA) and up-regulating H3K18 lactylation. PLoS Biol. 2024; 22(6): e3002666.

[99]

Wei S, Zhang J, Zhao R, et al. Histone lactylation promotes malignant progression by facilitating USP39 expression to target PI3K/AKT/HIF-1α signal pathway in endometrial carcinoma. Cell Death Discov. 2024; 10(1): 121.

[100]

Vitale C, Bottino C, Castriconi R. Monocyte and macrophage in neuroblastoma: blocking their pro-tumoral functions and strengthening their crosstalk with natural killer cells. Cells. 2023; 12(6): 885.

[101]

Wu X, Mi T, Jin L, et al. Dual roles of HK3 in regulating the network between tumor cells and tumor-associated macrophages in neuroblastoma. Cancer Immunol Immunother. 2024; 73(7): 122.

[102]

Zhang C, Zhou L, Zhang M, et al. H3K18 lactylation potentiates immune escape of non–small cell lung cancer. Cancer Res. 2024. OF1-OF13.

[103]

Cheng K, Cai N, Zhu J, et al. Tumor-associated macrophages in liver cancer: from mechanisms to therapy. Cancer Commun. 2022; 42(11): 1112-1140.

[104]

Cai J, Song L, Zhang F, et al. Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun. 2024; 44(11): 1231.

[105]

Khanduri I, Maru DM, Parra ER. Exploratory study of macrophage polarization and spatial distribution in colorectal cancer liver metastasis: a pilot study. Front Immunol. 2023; 14: 1223864.

[106]

Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 2019; 26(11): 2447-2463.

[107]

Gu J, Xu X, Li X, et al. Tumor-resident microbiota contributes to colorectal cancer liver metastasis by lactylation and immune modulation. Oncogene. 2024; 43(31): 2389-2404.

[108]

Wang J, Liu Z, Xu Y, et al. Enterobacterial LPS-inducible LINC00152 is regulated by histone lactylation and promotes cancer cells invasion and migration. Front Cell Infect Microbiol. 2022; 12: 913815.

[109]

Zhang X, Li Y, Chen Y. Development of a comprehensive gene signature linking hypoxia, glycolysis, lactylation, and metabolomic insights in gastric cancer through the integration of bulk and single-cell RNA-seq data. Biomedicines. 2023; 11(11): 2948.

[110]

Yang H, Zou X, Yang S, et al. Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer. Front Immunol. 2023; 14: 1149989.

[111]

Zhu M, Xiao Q, Cai X, et al. Predicting lymphoma prognosis using machine learning-based genes associated with lactylation. Transl Oncol. 2024; 49: 102102.

[112]

Pan J, Zhang J, Lin J, et al. Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning. Front Genet. 2024; 15: 1343140.

[113]

Liu C, Ni C, Li C, et al. Lactate-related gene signatures as prognostic predictors and comprehensive analysis of immune profiles in nasopharyngeal carcinoma. J Transl Med. 2024; 22(1): 1116.

[114]

Chen Y, Chang L, Hu L, et al. Identification of a lactylation-related gene signature to characterize subtypes of hepatocellular carcinoma using bulk sequencing data. J Gastrointest Oncol. 2024; 15(4): 1636-1646.

[115]

Yang YH, Yang JT, Liu JF. Lactylation prediction models based on protein sequence and structural feature fusion. Briefings Bioinformatics. 2024; 25(2): bbad539.

[116]

Han C, Deng Y, Xu W, et al. The roles of tumor-associated macrophages in prostate cancer. J Oncol. 2022; 2022: 8580043.

[117]

Chaudagar K, Hieromnimon HM, Kelley A, et al. Suppression of tumor cell lactate-generating signaling pathways eradicates murine PTEN/p53-deficient aggressive-variant prostate cancer via macrophage phagocytosis. Clin Cancer Res. 2023; 29(23): 4930-4940.

[118]

Yu Y, Huang X, Liang C, et al. Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol. 2023; 957: 176007.

[119]

Sun T, Liu B, Li Y, et al. Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J Exp Clin Res. 2023; 42(1): 253.

[120]

Wang W, Li T, Cheng Y, et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization. Cancer Cell. 2024; 42(5): 815-832.e12.

[121]

Li M, Sun P, Tu B, et al. Hypoxia conduces the glioma progression by inducing M2 macrophage polarization via elevating TNFSF9 level in a histone-lactylation-dependent manner. Am J Physiol Cell Physiol. 2024; 327(2): C487-C504.

[122]

De Leo A, Ugolini A, Yu X, et al. Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity. 2024; 57(5): 1105-1123.e8.

[123]

Chen H, Li Y, Li H, et al. NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 2024; 631(8021): 663-669.

[124]

Chen Y, Wu J, Zhai L, et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell. 2024; 187(2): 294-311.e21.

[125]

Li F, Zhang H, Huang Y, et al. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updates. 2024; 73: 101059.

[126]

Zhao Q, Wang Q, Yao Q, et al. Nonenzymatic lysine d-lactylation induced by glyoxalase II substrate SLG dampens inflammatory immune responses. Cell Res. 2025; 35(2): 97-116.

[127]

Gong H, Zhong H, Cheng L, et al. Post-translational protein lactylation modification in health and diseases: a double-edged sword. J Transl Med. 2024; 22(1): 41.

[128]

Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020; 877: 173090.

[129]

O'Neill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 2016; 213(1): 15-23.

[130]

Yang H, Sun Y, Li Q, et al. Diverse epigenetic regulations of macrophages in atherosclerosis. Front Cardiovasc Med. 2022; 9: 868788.

[131]

Ferrari E, Lutgens E, Weber C, et al. Atherosclerosis: cell biology and lipoproteins focus on epigenetic modification and macrophage biology. Curr Opin Lipidol. 2017; 28(2): 220-221.

[132]

Zhang Y, Jiang H, Dong M, et al. Macrophage MCT4 inhibition activates reparative genes and protects from atherosclerosis by histone H3 lysine 18 lactylation. Cell Rep. 2024; 43(5): 114180.

[133]

Chen L, Zhang M, Yang X, et al. Methyl-CpG-binding 2 K271 lactylation-mediated M2 macrophage polarization inhibits atherosclerosis. Theranostics. 2024; 14(11): 4256-4277.

[134]

Yang X, Zhang Y, Wang X, et al. Exercise-mediated epigenetic modifications in cardiovascular diseases. Epigenomics. 2025; 17(3): 179-191.

[135]

Xu X, Zhang DD, Kong P, et al. Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and pyroptosis in neointimal hyperplasia. Cell Rep. 2023; 42(8): 112869.

[136]

Wang T, Jiao Y, Zhang X. Immunometabolic pathways and its therapeutic implication in autoimmune diseases. Clin Rev Allergy Immunol. 2021; 60(1): 55-67.

[137]

Cutolo M, Soldano S, Gotelli E, et al. CTLA4-ig treatment induces M1-M2 shift in cultured monocyte-derived macrophages from healthy subjects and rheumatoid arthritis patients. Arthritis Res Ther. 2021; 23(1): 306.

[138]

Wang J, Yang P, Yu T, et al. Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci. 2022; 18(16): 6210-6225.

[139]

Gan PR, Wu H, Zhu YL, et al. Glycolysis, a driving force of rheumatoid arthritis. Int Immunopharmacol. 2024; 132: 111913.

[140]

Zhang Y, Gao Y, Wang Y, et al. RBM25 is required to restrain inflammation via ACLY RNA splicing-dependent metabolism rewiring. Cell Mol Immunol. 2024; 21(11): 1231-1250.

[141]

Chen L, Huang L, Gu Y, et al. Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 2022; 23(19): 11943.

[142]

Sun Z, Gao Z, Xiang M, et al. Comprehensive analysis of lactate-related gene profiles and immune characteristics in lupus nephritis. Front Immunol. 2024; 15: 1329009.

[143]

Weigand MA, Bardenheuer HJ, Böttiger BW. Klinisches management bei patienten mit sepsis. Der Anaesth. 2003; 52(1): 3-22.

[144]

Gong T, Wang QD, Loughran PA, et al. Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: role for CIRP-ZBP1-PANoptosis pathway. Military Med Res. 2024; 11(1): 71.

[145]

Chu X, Di C, Chang P, et al. Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front Immunol. 2021; 12: 786666.

[146]

Li S, Shen Y, Wang C, et al. Exploring the prognostic and diagnostic value of lactylation-related genes in sepsis. Sci Rep. 2024; 14(1): 23130.

[147]

Reynolds MB, Klein B, McFadden MJ, et al. Type I interferon governs immunometabolic checkpoints that coordinate inflammation during Staphylococcal infection. Cell Rep. 2024; 43(8): 114607.

[148]

Ma W, Ao S, Zhou J, et al. Methylsulfonylmethane protects against lethal dose MRSA-induced sepsis through promoting M2 macrophage polarization. Mol Immunol. 2022; 146: 69-77.

[149]

Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018; 18(4): 225-242.

[150]

Fei X, Chen L, Gao J, et al. p53 lysine-lactylated modification contributes to lipopolysaccharide-induced proinflammatory activation in BV2 cell under hypoxic conditions. Neurochem Int. 2024; 178: 105794.

[151]

Hu X, Huang J, Li Z, et al. Lactate promotes microglial scar formation and facilitates locomotor function recovery by enhancing histone H4 lysine 12 lactylation after spinal cord injury. J Neuroinflamm. 2024; 21: 193.

[152]

Wang X, Zhou G, Xiong J, et al. H4K12 lactylation activated-Spp1 in reprogrammed microglia improves functional recovery after spinal cord injury. CNS Neurosci Ther. 2025; 31(2): e70232.

[153]

Sun S, Xu X, Liang L, et al. Lactic acid-producing probiotic Saccharomyces cerevisiae attenuates ulcerative colitis via suppressing macrophage pyroptosis and modulating gut microbiota. Front Immunol. 2021; 12: 777665.

[154]

Xu ZP, Shan SY, Cai EW, et al. Gegen qinlian decoction inhibited M1 macrophage polarization and ulcerative colitis progression through regulating histone lactylation. Tissue Cell. 2024; 89: 102468.

[155]

Sha JF, Xie QM, Chen N, et al. TLR2-hif1α-mediated glycolysis contributes to pyroptosis and oxidative stress in allergic airway inflammation. Free Radic Biol Med. 2023; 200: 102-116.

[156]

Chen N, Xie QM, Song SM, et al. Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation. Int Immunopharmacol. 2024; 131: 111791.

[157]

Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9(6): 7204-7218.

[158]

Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012; 18(7): 1028-1040.

[159]

Sun YY, Li XF, Meng XM, et al. Macrophage phenotype in liver injury and repair. Scand J Immunol. 2017; 85(3): 166-174.

[160]

Tian Y, Zhang J, Jia Z, et al. Biomimetic mineralized mesenchymal stem cell-derived exosomes for dual modulation of ferroptosis and lactic acid-driven inflammation in acute liver injury therapy. J Colloid Interface Sci. 2025; 687: 489-506.

[161]

Hu S, Yang Z, Li L, et al. Salvianolic acid B alleviates liver injury by regulating lactate-mediated histone lactylation in macrophages. Molecules. 2024; 29(1): 236.

[162]

Li Q, Zhang F, Wang H, et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int J Biol Sci. 2024; 20(4): 1413-1435.

[163]

Du S, Zhang X, Jia Y, et al. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes. Theranostics. 2023; 13(11): 3856-3871.

[164]

Jin H, Luo R, Li J, et al. Inhaled platelet vesicle-decoyed biomimetic nanoparticles attenuate inflammatory lung injury. Front Pharmacol. 2022; 13: 1050224.

[165]

Wu D, Spencer CB, Ortoga L, et al. Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol. 2024; 74: 103194.

[166]

Qiao J, Tan Y, Liu H, et al. Histone H3K18 and ezrin lactylation promote renal dysfunction in sepsis-associated acute kidney injury. Adv Sci. 2024; 11(28): 2307216.

[167]

Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Delivery Rev. 2017; 121: 27-42.

[168]

Wu S, Li J, Zhan Y. H3K18 lactylation accelerates liver fibrosis progression through facilitating SOX9 transcription. Exp Cell Res. 2024; 440(2): 114135.

[169]

Zhou Y, Yan J, Huang H, et al. The m(6)A reader IGF2BP2 regulates glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis. Cell Death Dis. 2024; 15(3): 189.

[170]

Cui H, Xie N, Banerjee S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol. 2021; 64(1): 115-125.

[171]

Li J, Zeng G, Zhang Z, et al. Urban airborne PM(2.5) induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages. Ecotoxicol Environ Saf. 2024; 273: 116162.

[172]

Wang P, Xie D, Xiao T, et al. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. J Hazard Mater. 2024; 461: 132582.

[173]

Tan S, Chen S. The mechanism and effect of autophagy, apoptosis, and pyroptosis on the progression of silicosis. Int J Mol Sci. 2021; 22(15): 8110.

[174]

You X, Xie Y, Tan Q, et al. Glycolytic reprogramming governs crystalline silica-induced pyroptosis and inflammation through promoting lactylation modification. Ecotoxicol Environ Saf. 2024; 283: 116952.

[175]

Xiang T, Wang X, Huang S, et al. Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis. Phytomedicine. 2025; 136: 156324.

[176]

Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022; 7(1): 305.

[177]

Gao R, Li Y, Xu Z, et al. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology. 2023; 78(6): 1800-1815.

[178]

Li J, Chen X, Song S, et al. Hexokinase 2-mediated metabolic stress and inflammation burden of liver macrophages via histone lactylation in MASLD. Cell Rep. 2025; 44(3): 115350.

[179]

Ma XM, Geng K, Wang P, et al. MCT4-dependent lactate transport: a novel mechanism for cardiac energy metabolism injury and inflammation in type 2 diabetes mellitus. Cardiovasc Diabetol. 2024; 23(1): 96.

[180]

Chen X, Wang Y, Wang JN, et al. Lactylation-driven FTO targets CDK2 to aggravate microvascular anomalies in diabetic retinopathy. EMBO Mol Med. 2024; 16(2): 294.

[181]

Utz SG, See P, Mildenberger W, et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell. 2020; 181(3): 557-573.e18.

[182]

Wei L, Yang X, Wang J, et al. H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway. J Neuroinflamm. 2023; 20(1): 208.

[183]

Zhang Y, Sun Y, Hu Y, et al. Porphyromonas gingivalis msRNA P.G_45033 induces amyloid-β production by enhancing glycolysis and histone lactylation in macrophages. Int Immunopharmacol. 2023; 121: 110468.

[184]

Wang N, Wang W, Wang X, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 2022; 131(11): 893-908.

[185]

Lin X, Lei Y, Pan M, et al. Augmentation of scleral glycolysis promotes myopia through histone lactylation. Cell Metab. 2024; 36(3): 511-525.e7.

[186]

Xie L, Deng X, Li X, et al. CircMETTL3-156aa reshapes the glycolytic metabolism of macrophages to promote M1 polarization and induce cytokine storms in sHLH. Cell Death Discov. 2024; 10(1): 431.

[187]

Li XM, Yang Y, Jiang FQ, et al. Histone lactylation inhibits RARγ expression in macrophages to promote colorectal tumorigenesis through activation of TRAF6-IL-6-STAT3 signaling. Cell Rep. 2024; 43(2): 113688.

[188]

Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle. 2018; 17(4): 428-438.

[189]

Gou Y, Wang H, Wang T, et al. Ectopic endometriotic stromal cells-derived lactate induces M2 macrophage polarization via Mettl3/Trib1/ERK/STAT3 signalling pathway in endometriosis. Immunology. 2023; 168(3): 389-402.

[190]

Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α–mediated tumor progression. J Clin Investig. 2019; 129(2): 631-646.

[191]

Zhang L, Li S. Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer. Exp Cell Res. 2020; 388(2): 111846.

[192]

Bohn T, Rapp S, Luther N, et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol. 2018; 19(12): 1319-1329.

[193]

Baltazar F, Afonso J, Costa M, et al. Lactate beyond a waste metabolite: metabolic affairs and signaling in malignancy. Front Oncol. 2020; 10: 231.

[194]

Ippolito L, Morandi A, Giannoni E, et al. Lactate: a metabolic driver in the tumour landscape. Trends Biochem Sci. 2019; 44(2): 153-166.

[195]

Feng Y, Xiong Y, Qiao T, et al. Lactate dehydrogenase a: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018; 7(12): 6124-6136.

[196]

Yang K, Xu J, Fan M, et al. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-kB activation via GPR81-mediated signaling. Front Immunol. 2020; 11: 587913

[197]

Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol. 2019; 133: 36-46.

[198]

Pucino V, Bombardieri M, Pitzalis C, et al. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol. 2017; 47(1): 14-21.

[199]

Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov. 2016; 15(8): 551-567.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/