Confocal Raman microspectroscopy for spatially resolved tissue characterisation of disease-linked spectra-pathological signatures

Nektarios A. Valous , Inka Zörnig , Dirk Jäger

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (10) : e70487

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (10) : e70487 DOI: 10.1002/ctm2.70487
REVIEW

Confocal Raman microspectroscopy for spatially resolved tissue characterisation of disease-linked spectra-pathological signatures

Author information +
History +
PDF

Abstract

Raman spectroscopy is a versatile analytical technique for highly specific molecular characterisation of cells, biofluids and tissues. Confocal Raman microspectroscopy combines optical microscopy with Raman spectroscopy to spatially resolve biochemical changes in tissue samples. This work focuses on research articles that utilise confocal Raman microspectroscopy in human or murine tissue sections for identifying disease-linked spectra-pathological features. For scientists and clinicians who seek ideas in incorporating confocal Raman microspectroscopy into their experimental workflows, this piece provides a curated selection of studies (spanning cancer and cardiovascular diseases) that highlight key spectroscopic and biomedical insights. The lack of standardisation and the fragmentation of research protocols are major challenges that limit study reproducibility and prevent systematic cross-validation. Moving forward, confocal Raman microspectroscopy, coupled with robust computational approaches, will continue to detect disease-specific spatiotemporal biomolecular signatures, and integration with complementary imaging or omics methods will keep enhancing its ability to analyse complex biological systems and uncover disease progression mechanisms.

Keywords

biochemical imaging / biophotonics / Raman microscopy / spectral analysis / tissue-level insights

Cite this article

Download citation ▾
Nektarios A. Valous, Inka Zörnig, Dirk Jäger. Confocal Raman microspectroscopy for spatially resolved tissue characterisation of disease-linked spectra-pathological signatures. Clinical and Translational Medicine, 2025, 15(10): e70487 DOI:10.1002/ctm2.70487

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auner GW, Koya SK, Huang C, et al. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018; 37(4): 691-717.

[2]

Sabtu SN, Abdul Sani SF, Bradley DA, Looi LM, Osman Z. A review of the applications of Raman spectroscopy for breast cancer tissue diagnostic and their histopathological classification of epithelial to mesenchymal transition. J Raman Spectrosc. 2020; 51(3): 380-389.

[3]

Paraskevaidi M, Matthew BJ, Holly BJ, et al. Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases. Appl Spectrosc Rev. 2021; 56(8–10): 804-868.

[4]

Diem M, Mazur A, Lenau K, et al. Molecular pathology via IR and Raman spectral imaging. J Biophoton. 2013; 6(11–12): 855-886.

[5]

Old OJ, Fullwood LM, Scott R, et al. Vibrational spectroscopy for cancer diagnostics. Anal Methods. 2014; 6(12): 3901.

[6]

Chen C, Qi J, Li Y, et al. Applications of Raman spectroscopy in the diagnosis and monitoring of neurodegenerative diseases. Front Neurosci. 2024; 18: 1301107.

[7]

Shipp DW, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences. Adv Opt Photon. 2017; 9(2): 315.

[8]

Masson LE, O'Brien CM, Pence IJ, et al. Dual excitation wavelength system for combined fingerprint and high wavenumber Raman spectroscopy. Analyst. 2018; 143(24): 6049-6060.

[9]

Pence I, Mahadevan-Jansen A. Clinical instrumentation and applications of Raman spectroscopy. Chem Soc Rev. 2016; 45(7): 1958-1979.

[10]

Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK. Raman techniques: fundamentals and frontiers. Nanoscale Res Lett. 2019; 14(1): 231.

[11]

Rigneault H, Berto P. Tutorial: coherent Raman light matter interaction processes. APL Photon. 2018; 3(9): 091101.

[12]

Liu Y, Kyne M, Wang C, Yu X. Data mining in Raman imaging in a cellular biological system. Comput Struct Biotechnol J. 2020; 18: 2920-2930.

[13]

Luo R, Popp J, Bocklitz T. Deep learning for Raman spectroscopy: a review. Analytica. 2022; 3(3): 287-301.

[14]

Abramczyk H, Brozek-Pluska B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev. 2013; 113(8): 5766-5781.

[15]

Krafft C, Popp J. The many facets of Raman spectroscopy for biomedical analysis. Anal Bioanal Chem. 2015; 407(3): 699-717.

[16]

Huser T, Chan J. Raman spectroscopy for physiological investigations of tissues and cells. Adv Drug Deliv Rev. 2015; 89: 57-70.

[17]

Dybas J, Marzec KM, Pacia MZ, et al. Raman spectroscopy as a sensitive probe of soft tissue composition—imaging of cross-sections of various organs vs. single spectra of tissue homogenates. TrAC Trends Anal Chem. 2016; 85: 117-127.

[18]

Krafft C, Schie IW, Meyer T, Schmitt M, Popp J. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem Soc Rev. 2016; 45(7): 1819-1849.

[19]

Austin LA, Osseiran S, Evans CL. Raman technologies in cancer diagnostics. Analyst. 2016; 141(2): 476-503.

[20]

Krafft C, Schmitt M, Schie IW, et al. Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Angew Chem Int Ed. 2017; 56(16): 4392-4430.

[21]

Fung AA, Shi L. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. WIREs Syst Biol Med. 2020; 12(6): e1501.

[22]

Ralbovsky NM, Lednev IK. Raman spectroscopy and chemometrics: a potential universal method for diagnosing cancer. Spectrochim Acta A Mol Biomol Spectrosc. 2019; 219: 463-487.

[23]

Senger RS, Scherr D. Resolving complex phenotypes with Raman spectroscopy and chemometrics. Curr Opin Biotechnol. 2020; 66: 277-282.

[24]

El-Mashtoly SF, Gerwert K. Diagnostics and therapy assessment using label-free Raman imaging. Anal Chem. 2022; 94(1): 120-142.

[25]

Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev. 2020; 49(20): 7428-7453.

[26]

Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RFB. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst. 2020; 145(6): 2070-2105.

[27]

Pence IJ, Evans CL. Translational biophotonics with Raman imaging: clinical applications and beyond. Analyst. 2021; 146(21): 6379-6393.

[28]

Lizio MG, Boitor R, Notingher I. Selective-sampling Raman imaging techniques for ex vivo assessment of surgical margins in cancer surgery. Analyst. 2021; 146(12): 3799-3809.

[29]

Bocklitz TW, Crecelius AC, Matthäus C, et al. Deeper understanding of biological tissue: quantitative correlation of MALDI-TOF and Raman imaging. Anal Chem. 2013; 85(22): 10829-10834.

[30]

Silge A, Weber K, Cialla-May D, Müller-Bötticher L, Fischer D, Popp J. Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques. TrAC Trends Anal Chem. 2022; 153: 116623.

[31]

Baker MJ, Byrne HJ, Chalmers J, et al. Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst. 2018; 143(8): 1735-1757.

[32]

Chen C, Zhao Z, Qian N, Wei S, Hu F, Min W. Multiplexed live-cell profiling with Raman probes. Nat Commun. 2021; 12(1): 3405.

[33]

Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016; 11(4): 664-687.

[34]

Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The emerging role of Raman spectroscopy as an omics approach for metabolic profiling and biomarker detection toward precision medicine. Chem Rev. 2023; 123(13): 8297-8346.

[35]

Zhang S, Song Z, Godaliyadda GMDP, et al. Dynamic sparse sampling for confocal Raman microscopy. Anal Chem. 2018; 90(7): 4461-4469.

[36]

Tian S, Zhang Z, Meng F, Wang Z, Luo L. Recent advances in enhancement of Raman scattering intensity for biological applications. Chem Biomed Imaging. 2023; 1(7): 575-589.

[37]

LaLone V, Smith D, Diaz-Espinosa J, Rosania GR. Quantitative Raman chemical imaging of intracellular drug-membrane aggregates and small molecule drug precipitates in cytoplasmic organelles. Adv Drug Deliv Rev. 2023; 202: 115107.

[38]

Kim Y, Lee EJ, Roy S, et al. Measurement of lateral and axial resolution of confocal Raman microscope using dispersed carbon nanotubes and suspended graphene. Curr Appl Phys. 2020; 20(1): 71-77.

[39]

Wu Z, Jiang L, Zhao J, Lui H, Zeng H. In vivo micro-Raman spectroscopy from an arbitrary-shaped region of interest under simultaneous reflectance confocal imaging guidance. APL Photon. 2024; 9(11): 110805.

[40]

Mochizuki K, Kumamoto Y, Maeda S, et al. High-throughput line-illumination Raman microscopy with multislit detection. Biomed Opt Express. 2023; 14(3): 1015.

[41]

Sugiyama K, Marzi J, Alber J, et al. Raman microspectroscopy and Raman imaging reveal biomarkers specific for thoracic aortic aneurysms. Cell Rep Med. 2021; 2(5): 100261.

[42]

Zhang B, Zhang Z, Gao B, et al. Raman microspectroscopy based TNM staging and grading of breast cancer. Spectrochim Acta A Mol Biomol Spectrosc. 2023; 285: 121937.

[43]

Grosset A, Dallaire F, Nguyen T, et al. Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: a diagnostic accuracy case–control study with multicohort validation. PLoS Med. 2020; 17(8): e1003281.

[44]

Sigle M, Rohlfing A, Kenny M, et al. Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution. Nat Commun. 2023; 14(1): 5799.

[45]

Cheng J, Xiao Y, Jiang P. Fumarate integrates metabolism and immunity in diseases. Trends Endocrinol Metab. 2025: S1043276025000517.

[46]

Kamp M, Surmacki J, Segarra Mondejar M, et al. Raman micro-spectroscopy reveals the spatial distribution of fumarate in cells and tissues. Nat Commun. 2024; 15(1): 5386.

[47]

Cheng J, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015; 350(6264): aaa8870.

[48]

Bishop DP, Cole N, Zhang T, Doble PA, Hare DJ. A guide to integrating immunohistochemistry and chemical imaging. Chem Soc Rev. 2018; 47(11): 3770-3787.

[49]

Butler HJ, Cameron JM, Jenkins CA, et al. Shining a light on clinical spectroscopy: translation of diagnostic IR, 2D-IR and Raman spectroscopy towards the clinic. Clin Spectrosc. 2019; 1: 100003.

[50]

Guo S, Beleites C, Neugebauer U, et al. Comparability of Raman spectroscopic configurations: a large scale cross-laboratory study. Anal Chem. 2020; 92(24): 15745-15756.

[51]

Gautam R, Vanga S, Ariese F, Umapathy S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech Instrum. 2015; 2(1): 8.

[52]

Qi Y, Hu D, Jiang Y, et al. Recent progresses in machine learning assisted Raman spectroscopy. Adv Opt Mater. 2023; 11(14): 2203104.

[53]

Contreras J, Bocklitz T. Explainable artificial intelligence for spectroscopy data: a review. Pflüg Arch—Eur J Physiol. 2025; 477(4): 603-615.

[54]

Georgiev D, Pedersen SV, Xie R, Fernández-Galiana Á, Stevens MM, Barahona M. RamanSPy: an open-source Python package for integrative Raman spectroscopy data analysis. Anal Chem. 2024; 96(21): 8492-8500.

[55]

Valous NA, Moraleda RR, Jäger D, Zörnig I, Halama N. Interrogating the microenvironmental landscape of tumors with computational image analysis approaches. Semin Immunol. 2020; 48: 101411.

[56]

Valous NA, Charoentong P, Lenoir B, Zörnig I, Jäger D. Recent computational image workflows advance the spatio-phenotypic analysis of the tumor immune microenvironment. ImmunoInformatics. 2022; 7: 100016.

[57]

Kobayashi-Kirschvink KJ, Comiter CS, Gaddam S, et al. Prediction of single-cell RNA expression profiles in live cells by Raman microscopy with Raman2RNA. Nat Biotechnol. 2024; 42(11): 1726-1734.

[58]

Valera PS, Plou J, García I, et al. SERS analysis of cancer cell-secreted purines reveals a unique paracrine crosstalk in MTAP-deficient tumors. Proc Natl Acad Sci USA. 2023;120(52): e2311674120.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/