PDF
Abstract
Background: In the realm of public health, among the primary perils menacing human well-being, the issue of pathogen infection persists as a significant concern. Precise and timely diagnosis of diseases constitutes the bedrock for effective therapeutic interventions and epidemiological monitoring. Hence, it is crucial to develop quick, sensitive, and highly effective methods for identifying pathogen and their variants.
Material and methods: This article reviews the recent research progress in the CRISPR/Cas system for detecting nucleic acids, with an emphasis on CRISPR/Cas9, CRISPR/Cas12, and CRISPR/Cas13. Initially, we provided a concise overview of the nucleic acid detection mechanism utilizing the CRISPR/Cas system. Subsequently, we dissect the molecular mechanisms of CRISPR tools, compare their clinical efficacy against traditional methods, and explore frontier innovations such as amplification-free detection and AI integration.
Conclusion: Ultimately, we argue that CRISPR diagnostics must evolve beyond technical optimization to embrace ecological adaptability, ensuring that precision medicine serves as a bridge-rather than a barrier-to global health equity.
Keywords
bacteria
/
CRISPR/Cas
/
detect
/
nucleic acid test
Cite this article
Download citation ▾
Zilong Wang, Qianqian Wang, Jiaming Zhang, Bingyu Li, Yuke Li, Zhengbo Chen, Dandan Guo, Shuying Feng.
CRISPR-driven diagnostics: Molecular mechanisms, clinical efficacy and translational challenges.
Clinical and Translational Medicine, 2025, 15(10): e70482 DOI:10.1002/ctm2.70482
| [1] |
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987; 169(12): 5429-5433.
|
| [2] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816-821.
|
| [3] |
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018; 360(6387): 436-439.
|
| [4] |
Gauthier NPG, Chorlton SD, Krajden M, Manges AR. Agnostic sequencing for detection of viral pathogens. Clin Microbiol Rev. 2023; 36(1): e0011922.
|
| [5] |
Tak LJ, Shin MK, Yoo JI, Cho MC, Kim W. Development of droplet digital PCR-based detection of bacterial pathogens in prosthetic joint infection: a preliminary study using a synthesized model plasmid. Front Cell Infect Microbiol. 2023; 13: 1301446.
|
| [6] |
Wu Y, Battalapalli D, Hakeem MJ, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnol. 2021; 19(1): 401.
|
| [7] |
Lee JWJ, Plichta D, Hogstrom L, et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe. 2021; 29(8): 1294-1304.
|
| [8] |
Ma L, Peng L, Yin L, Liu G, Man S. CRISPR-Cas12a-Powered dual-mode biosensor for ultrasensitive and cross-validating detection of pathogenic bacteria. ACS Sens. 2021; 6(8): 2920-2927.
|
| [9] |
Furst AL, Francis MB. Impedance-based detection of bacteria. Chem Rev. 2019; 119(1): 700-726.
|
| [10] |
Inda ME, Lu TK. Microbes as biosensors. Annu Rev Microbiol. 2020; 74: 337-359.
|
| [11] |
Huang Y, Chen W, Chung J, Yin J, Yoon J. Recent progress in fluorescent probes for bacteria. Chem Soc Rev. 2021; 50(13): 7725-7744.
|
| [12] |
Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst. 2019; 144(2): 396-411.
|
| [13] |
Wei Y, Hu Y, Wang L, et al. Ultrasensitive detection of Salmonella typhi using a PAM-free Cas14a-based biosensor. Biosens Bioelectron. 2024; 259: 116408.
|
| [14] |
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019; 20(8): 490-507.
|
| [15] |
Blanas A, Cornelissen LAM, Kotsias M, et al. Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR-dCas9-VPR technology reveals potent N-glycome alterations in colorectal cancer cells. Glycobiology. 2019; 29(2): 137-150.
|
| [16] |
Porteus MH. A new class of medicines through DNA editing. N Engl J Med. 2019; 380(10): 947-959.
|
| [17] |
Nouri R, Tang Z, Dong M, Liu T, Kshirsagar A, Guan W. CRISPR-based detection of SARS-CoV-2: a review from sample to result. Biosens Bioelectron. 2021; 178: 113012.
|
| [18] |
Zhou L, Peng R, Zhang R, Li J. The applications of CRISPR/Cas system in molecular detection. J Cell Mol Med. 2018; 22(12): 5807-5815.
|
| [19] |
Sashital DG. Pathogen detection in the CRISPR-Cas era. Genome Med. 2018; 10(1): 32.
|
| [20] |
Azam MW, Zarrilli R, Khan AU. Updates on the virulence factors produced by multidrug-resistant Enterobacterales and strategies to control their infections. Microorganisms. 2023; 11(8): 1901.
|
| [21] |
Freije CA, Sabeti PC. Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host Microbe. 2021; 29(5): 689-703.
|
| [22] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017; 356(6336): 438-442.
|
| [23] |
Chen JS, Ma E, Harrington LB, et al. Erratum: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2021; 371(6531).
|
| [24] |
Park BJ, Park MS, Lee JM, Song YJ. Specific detection of influenza A and B viruses by CRISPR-Cas12a-based assay. Biosensors (Basel). 2021; 11(3): 88.
|
| [25] |
Chakraborty J, Chaudhary AA, Khan SU, Rudayni HA, Rahaman SM, Sarkar H. CRISPR/Cas-based biosensor as a new age detection method for pathogenic bacteria. ACS Omega. 2022; 7(44): 39562-39573.
|
| [26] |
Shi W, Li K, Ji Y, Jiang Q, Shi M, Mi Z. Development and evaluation of reverse transcription-loop-mediated isothermal amplification assay for rapid detection of enterovirus 71. BMC Infect Dis. 2011; 11: 197.
|
| [27] |
Li L, Li S, Wu N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol. 2019; 8(10): 2228-2237.
|
| [28] |
Chen Y, Qian S, Yu X, Wu J, Xu J. Microfluidics: the propellant of CRISPR-based nucleic acid detection. Trends Biotechnol. 2023; 41(4): 557-574.
|
| [29] |
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020; 38(7): 824-844.
|
| [30] |
Gu X, Tang Q, Zhu Y, et al. Advancements of CRISPR technology in public health-related analysis. Biosens Bioelectron. 2024; 261: 116449.
|
| [31] |
Zhou Y, Yan Z, Zhou S, et al. ERA-CRISPR/Cas12a-based, fast and specific diagnostic detection for Chlamydia pneumoniae. Front Cell Infect Microbiol. 2024; 14: 1477422.
|
| [32] |
Kim H, Jang H, Song J, et al. A CRISPR/Cas12 trans-cleavage reporter enabling label-free colorimetric detection of SARS-CoV-2 and its variants. Biosens Bioelectron. 2024; 251: 116102.
|
| [33] |
Liu X, Li G, Liu Y, Zhou F, Huang X, Li K. Advances in CRISPR/Cas gene therapy for inborn errors of immunity. Front Immunol. 2023; 14: 1111777.
|
| [34] |
Wu X, Scott DA, Kriz AJ, et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. 2014; 32(7): 670-676.
|
| [35] |
Hand TH, Das A, Li H. Directed evolution studies of a thermophilic type II-C Cas9. Methods Enzymol. 2019; 616: 265-288.
|
| [36] |
Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016; 63(3): 355-370.
|
| [37] |
Fozouni P, Son S, Diaz de Leon Derby M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 2021; 184(2): 323-333.
|
| [38] |
Gao J, Wu L, Yang D, Gong W, Wang J. A one-pot CRISPR/Cas9-typing PCR for DNA detection and genotyping. J Mol Diagn. 2021; 23(1): 46-60.
|
| [39] |
Zhen D, Zhang S, Yang A, et al. A supersensitive electrochemical sensor based on RCA amplification-assisted “silver chain”-linked gold interdigital electrodes and CRISPR/Cas9 for the detection of Staphylococcus aureus in food. Food Chem. 2024; 440: 138197.
|
| [40] |
Yang B, Kong J, Fang X. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat Commun. 2022; 13(1): 3999.
|
| [41] |
Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2019; 3(6): 427-437.
|
| [42] |
Azhar M, Phutela R, Kumar M, et al. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosens Bioelectron. 2021; 183: 113207.
|
| [43] |
Jin J, Xu Y, Huo L, et al. An improved strategy for CRISPR/Cas9 gene knockout and subsequent wildtype and mutant gene rescue. PLoS One. 2020; 15(2): e0228910.
|
| [44] |
Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat Commun. 2023; 14(1): 212.
|
| [45] |
Bao XR, Pan Y, Lee CM, Davis TH, Bao G. Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nat Protoc. 2021; 16(1): 10-26.
|
| [46] |
Fan X, Gao Z, Ling D, et al. The dCas9/crRNA linked immunological assay (dCLISA) for sensitive, accurate, and facile drug resistance gene analysis. Biosens Bioelectron. 2025; 273: 117147.
|
| [47] |
Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016; 34(2): 184-191.
|
| [48] |
Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021; 385(6): 493-502.
|
| [49] |
Qiao Y, Wang X, Fan Z, Song Y, Zhang J, Han Q. Raman-enhanced sensor based on CRISPR-SERS technology for the rapid and hypersensitive detection of Mycobacterium tuberculosis. Anal Bioanal Chem. 2024; 416(28): 6551-6562.
|
| [50] |
Zhang W, Qu H, Wu X, Shi J, Wang X. Rapid, sensitive, and user-friendly detection of Pseudomonas aeruginosa using the RPA/CRISPR/Cas12a system. BMC Infect Dis. 2024; 24(1): 458.
|
| [51] |
Yin W, Li L, Yang Y, et al. Ultra-sensitive detection of the SARS-CoV-2 nucleocapsid protein via a clustered regularly interspaced short palindromic repeat/Cas12a-mediated immunoassay. ACS Sens. 2024; 9(6): 3150-3157.
|
| [52] |
Kachwala MJ, Hamdard F, Cicek D, et al. Universal CRISPR-Cas12a and toehold RNA cascade reaction on paper substrate for visual Salmonella genome detection. Adv Healthc Mater. 2024; 13(22): e2400508.
|
| [53] |
Xiong M, Wang Y, Lu S, et al. Space-coded microchip for multiplexed respiratory virus detection via CRISPR-Cas12a and RPA. Talanta. 2025; 291: 127815.
|
| [54] |
Gao S, Guo J, Wang T, Xu L. A rapid visual detection method for sugarcane streak mosaic virus based on one-tube RPA-CRISPR/Cas12a. Talanta. 2025; 291: 127888.
|
| [55] |
Tian Q, Zhou H, Zhao Z, et al. Single and dual RPA-CRISPR/Cas assays for point-of-need detection of Stewart's wilt pathogen (Pantoea stewartii subsp. stewartii) of corn and maize dwarf mosaic virus. Pest Manag Sci. 2025; 81(4): 1988-1999.
|
| [56] |
Tan M, Liang L, Liao C, et al. A rapid and ultra-sensitive dual readout platform for Klebsiella pneumoniae detection based on RPA-CRISPR/Cas12a. Front Cell Infect Microbiol. 2024; 14: 1362513.
|
| [57] |
Zhang Y, Chen M, Liu C, et al. Sensitive and rapid on-site detection of SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with CRISPR/Cas12-assisted RT-LAMP. Sens Actuators B Chem. 2021; 345: 130411.
|
| [58] |
Huang X, Zhang F, Zhu K, Lin W, Ma W. dsmCRISPR: dual synthetic mismatches CRISPR/Cas12a-based detection of SARS-CoV-2 D614G mutation. Virus Res. 2021; 304: 198530.
|
| [59] |
Chen Y, Yang T, Qian S, et al. Multiple crRNAs-assisted CRISPR/Cas12a assay targeting cytochrome b gene for amplification-free detection of meat adulteration. Anal Chim Acta. 2022; 1231: 340417.
|
| [60] |
Mao Z, Chen R, Wang X, et al. CRISPR/Cas12a-based technology: a powerful tool for biosensing in food safety. Trends Food Sci Technol. 2022; 122: 211-222.
|
| [61] |
Dai Y, Somoza RA, Wang L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew Chem Int Ed Engl. 2019; 58(48): 17399-17405.
|
| [62] |
Carota AG, Bonini A, Urban M, et al. Low-cost inkjet-printed nanostructured biosensor based on CRISPR/Cas12a system for pathogen detection. Biosens Bioelectron. 2024; 258: 116340.
|
| [63] |
Zhang S, Xu D, Li F, Wang J. CRISPR-based non-nucleic acid detection. Trends Biotechnol. 2025.
|
| [64] |
Su W, Li J, Ji C, et al. CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets. Nano Res. 2023: 1-14.
|
| [65] |
Deng X, Osikpa E, Yang J, et al. Structural basis for the activation of a compact CRISPR-Cas13 nuclease. Nat Commun. 2023; 14(1): 5845.
|
| [66] |
Patchsung M, Jantarug K, Pattama A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 2020; 4(12): 1140-1149.
|
| [67] |
Zhang Y, Xiang Y, Hou D, et al. A one-pot method for universal dengue virus detection by combining RT-RPA amplification and CRISPR/Cas12a assay. BMC Microbiol. 2025; 25(1): 163.
|
| [68] |
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018; 360(6387): 439-444.
|
| [69] |
Arizti-Sanz J, Bradley A, Zhang YB, et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat Biomed Eng. 2022; 6(8): 932-943.
|
| [70] |
Casati B, Verdi JP, Hempelmann A, et al. Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO. Nat Commun. 2022; 13(1): 3308.
|
| [71] |
You D, Xu T, Huang BZ, et al. Rapid, sensitive, and visual detection of pseudorabies virus with an RPA-CRISPR/EsCas13d-based dual-readout portable platform. Anal Chim Acta. 2024; 1318: 342918.
|
| [72] |
Allan-Blitz LT, Adams G, Sanders G, et al. Preliminary clinical performance of a Cas13a-based lateral flow assay for detecting Neisseria gonorrhoeae in urine specimens. mSphere. 2025; 10(1): e0067724.
|
| [73] |
Yang JW, Kim H, Hyeon LS, Yoo JS, Kang S. Development of a recombinase polymerase amplification-coupled CRISPR/Cas12a platform for rapid detection of antimicrobial-resistant genes in carbapenem-resistant Enterobacterales. Biosensors (Basel). 2024; 14(11): 536.
|
| [74] |
Bruch R, Baaske J, Chatelle C, et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater. 2019; 31(51): e1905311.
|
| [75] |
Shinoda H, Taguchi Y, Nakagawa R, et al. Amplification-free RNA detection with CRISPR-Cas13. Commun Biol. 2021; 4(1): 476.
|
| [76] |
Thakku SG, Lirette J, Murugesan K, et al. Genome-wide tiled detection of circulating Mycobacterium tuberculosis cell-free DNA using Cas13. Nat Commun. 2023; 14(1): 1803.
|
| [77] |
Ackerman CM, Myhrvold C, Thakku SG, et al. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020; 582(7811): 277-282.
|
| [78] |
Wessels HH, Mendez-Mancilla A, Hao Y, et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat Methods. 2023; 20(1): 86-94.
|
| [79] |
Tambe A, East-Seletsky A, Knott GJ, Doudna JA, O'Connell MR. RNA binding and HEPN-nuclease activation are decoupled in CRISPR-Cas13a. Cell Rep. 2018; 24(4): 1025-1036.
|
| [80] |
Hryhorowicz M, Lipinski D, Zeyland J. Evolution of CRISPR/Cas systems for precise genome editing. Int J Mol Sci. 2023; 24(18): 14233.
|
| [81] |
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016; 353(6299): aaf5573.
|
| [82] |
Zhou J, Yin L, Dong Y, et al. CRISPR-Cas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples. Anal Chim Acta. 2020; 1127: 225-233.
|
| [83] |
Chapman ME, Brendish NJ, Morris M, et al. Real-world performance of a single-use, analyser-free, molecular point-of-care test for COVID-19 used in the emergency department: results of a prospective trial (ED-POC). J Infect. 2024; 89(5): 106264.
|
| [84] |
Lai Y, Guo K, Zhu C, et al. Cas14VIDet: a visual instant method free from PAM restriction for antibiotic resistance bacteria detection. Biosens Bioelectron. 2025; 268: 116884.
|
| [85] |
Song F, Wei Y, Wang P, et al. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. Biosens Bioelectron. 2021; 185: 113262.
|
| [86] |
Liu JJ, Orlova N, Oakes BL, et al. Author correction: CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. 2019; 568(7752): E8-E10.
|
| [87] |
Tsuchida CA, Zhang S, Doost MS, et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell. 2022; 82(6): 1199-1209.
|
| [88] |
Xing W, Li D, Wang W, Liu JG, Chen C. Conformational dynamics of CasX (Cas12e) in mediating DNA cleavage revealed by single-molecule FRET. Nucleic Acids Res. 2024; 52(15): 9014-9027.
|
| [89] |
Hu C, Ni D, Nam KH, et al. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. Mol Cell. 2022; 82(15): 2754-2768.
|
| [90] |
Zhou J, Li Z, Seun Olajide J, Wang G. CRISPR/Cas-based nucleic acid detection strategies: trends and challenges. Heliyon. 2024; 10(4): e26179.
|
| [91] |
Zhang Y, Chen J, Kong F, et al. Label-free colorimetric detection of viral RNA based on clustered regularly interspaced short palindromic repeats and gold nanoparticles with a portable device. Langmuir. 2024; 40(22): 11534-11540.
|
| [92] |
Huang L, Zhang W, Liu M, et al. Entropy-driven amplification reaction and the CRISPR/Cas12a system form the basis of an electrochemical biosensor for E. coli-specific detection. Bioelectrochemistry. 2025; 161: 108815.
|
| [93] |
Zhang T, Wang X, Jiang Y, et al. A miniaturized RPA-CRISPR/Cas12a-based nucleic acid diagnostic platform for rapid and simple self-testing of SARS-CoV-2. Anal Chim Acta. 2025; 1338: 343593.
|
| [94] |
Liu R, Xing Y, Shen J. Establishment and methodological evaluation of a rapid detection method for Cryptococcus neoformans and Cryptococcus gattii species complexes based on CRISPR-Cas12a technology. J Microbiol Methods. 2024; 225: 107026.
|
| [95] |
Gao N, Zhou J, Li G, Liu R, Lu G, Shen J. Methodological evaluation of carbapenemase detection by different methods. Pol J Microbiol. 2024; 73(3): 383-394.
|
| [96] |
Peng W, Shi M, Hu B, et al. Nanotechnology-leveraged CRISPR/Cas systems: icebreaking in trace cancer-related nucleic acids biosensing. Mol Cancer. 2025; 24(1): 78.
|
| [97] |
Lima A, Franca A, Muzny CA, Taylor CM, Cerca N. DNA extraction leads to bias in bacterial quantification by qPCR. Appl Microbiol Biotechnol. 2022; 106(24): 7993-8006.
|
| [98] |
Brown L, Rautemaa-Richardson R, Mengoli C, et al. Polymerase chain reaction on respiratory tract specimens of immunocompromised patients to diagnose pneumocystis pneumonia: a systematic review and meta-analysis. Clin Infect Dis. 2024; 79(1): 161-168.
|
| [99] |
Xiong XS, Zhang XD, Yan JW, et al. Identification of Mycobacterium tuberculosis resistance to common antibiotics: an overview of current methods and techniques. Infect Drug Resist. 2024; 17: 1491-1506.
|
| [100] |
Goldenberg JZ, Yap C, Lytvyn L, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017; 12(12): CD006095.
|
| [101] |
Maddocks S, Olma T, Chen S. Comparison of CHROMagar Salmonella medium and xylose-lysine-desoxycholate and Salmonella-Shigella agars for isolation of Salmonella strains from stool samples. J Clin Microbiol. 2002; 40(8): 2999-3003.
|
| [102] |
Liu S, Hu J, Zhang R, et al. Catalytic hairpin assembly assists CRISPR/Cas12a-mediated high-sensitivity detection of aflatoxin B1. Talanta. 2025; 293: 128043.
|
| [103] |
Lin DY, Yu CY, Ku CA, Chung CK. Design, fabrication, and applications of SERS substrates for food safety detection: review. Micromachines (Basel). 2023; 14(7): 1343.
|
| [104] |
Dobrea A, Hall N, Milne S, Corrigan DK, Jimenez M. A plug-and-play, easy-to-manufacture fluidic accessory to significantly enhance the sensitivity of electrochemical immunoassays. Sci Rep. 2024; 14(1): 14154.
|
| [105] |
Chan AP, Siddique A, Desplat Y, et al. A CRISPR-enhanced metagenomic NGS test to improve pandemic preparedness. Cell Rep Methods. 2023; 3(5): 100463.
|
| [106] |
Rodriguez R, Krishnan Y. The chemistry of next-generation sequencing. Nat Biotechnol. 2023; 41(12): 1709-1715.
|
| [107] |
Wang SW, Gao C, Zheng YM, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 2022; 21(1): 57.
|
| [108] |
Yu C, Liu Y, Zhang W, Yao X. A three-way junction probe triggered CRISPR/Cas14a1 enhanced EXPonential amplification reaction for sensitive Pseudomonas aeruginosa detection. Anal Methods. 2025; 17(2): 284-290.
|
| [109] |
Rihs JB, Vilela MT, Dos Santos JSC, et al. qPCR as a tool for the diagnosis of visceral and cutaneous leishmaniasis: a systematic review and meta-analysis. Acta Parasitol. 2025; 70(1): 16.
|
| [110] |
Morovati H, Kord M, Ahmadikia K, et al. A comprehensive review of identification methods for pathogenic yeasts: challenges and approaches. Adv Biomed Res. 2023; 12: 187.
|
| [111] |
Nobrega DB, French JE, Kelton DF. A scoping review of the testing of bulk tank milk to detect nonbacterial pathogens or herd exposure to nonbacterial pathogens in dairy cattle. J Dairy Sci. 2023; 106(8): 5636-5658.
|
| [112] |
Cheng Y, Lyu J, Han J, et al. A specific and ultrasensitive Cas12a/crRNA assay with recombinase polymerase amplification and lateral flow biosensor technology for the rapid detection of Streptococcus pyogenes. Microbiol Spectr. 2024; 12(10): e0034524.
|
| [113] |
Xiang X, Ren X, Wen Q, et al. Automatic microfluidic harmonized RAA-CRISPR diagnostic system for rapid and accurate identification of bacterial respiratory tract infections. Anal Chem. 2024; 96(16): 6282-6291.
|
| [114] |
Matson RS. ELISA-based biosensors. Methods Mol Biol. 2023; 2612: 225-238.
|
| [115] |
Duregon E, Pomatto-Watson L, Bernier M, Price NL, de Cabo R. Intermittent fasting: from calories to time restriction. Geroscience. 2021; 43(3): 1083-1092.
|
| [116] |
Hao L, Zhao RT, Welch NL, et al. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics. Nat Nanotechnol. 2023; 18(7): 798-807.
|
| [117] |
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci. 2021; 58(2): 77-100.
|
| [118] |
van Dongen JE, Berendsen JTW, Steenbergen RDM, Wolthuis RMF, Eijkel JCT, Segerink LI. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosens Bioelectron. 2020; 166: 112445.
|
| [119] |
Xue Y, Chen Z, Zhang W, Zhang J. Engineering CRISPR/Cas13 system against RNA viruses: from diagnostics to therapeutics. Bioengineering (Basel). 2022; 9(7): 291.
|
| [120] |
Duran-Vinet B, Araya-Castro K, Chao TC, et al. Potential applications of CRISPR/Cas for next-generation biomonitoring of harmful algae blooms: a review. Harmful Algae. 2021; 103: 102027.
|
| [121] |
Singh D. Revolutionizing lung cancer treatment: innovative CRISPR-Cas9 delivery strategies. AAPS PharmSciTech. 2024; 25(5): 129.
|
| [122] |
Islam MS, Habib MA, Tonu NS, Haque MS, Rahman MM. Beyond serology: a meta-analysis of advancements in molecular detection of Brucella spp. in seronegative animals and biological samples. Vet Med Sci. 2025; 11(1): e70200.
|
| [123] |
Poggi C, Lucenteforte E, Petri D, De Masi S, Dani C. Presepsin for the diagnosis of neonatal early-onset sepsis: a systematic review and meta-analysis. JAMA Pediatr. 2022; 176(8): 750-758.
|
| [124] |
Kim J, Kim YR, Lee SM, et al. Novel isothermal amplification integrated with CRISPR/Cas13a and its applications for ultrasensitive detection of SARS-CoV-2. ACS Synth Biol. 2025; 14(2): 463-469.
|
| [125] |
Yin L, Zhao Z, Wang C, et al. Development and evaluation of a CRISPR/Cas12a-based diagnostic test for rapid detection and genotyping of HR-HPV in clinical specimens. Microbiol Spectr. 2025; 13(1): e0225324.
|
| [126] |
Naeem M, Hoque MZ, Ovais M, Basheer C, Ahmad I. Stimulus-responsive smart nanoparticles-based CRISPR-Cas delivery for therapeutic genome editing. Int J Mol Sci. 2021; 22(20): 11300.
|
| [127] |
Sotoudeh-Anvari A. The applications of MCDM methods in COVID-19 pandemic: a state of the art review. Appl Soft Comput. 2022; 126: 109238.
|
| [128] |
Xiao G, Liu H, Xu H, et al. Direct detection from sputum for drug-resistant Mycobacterium tuberculosis using a CRISPR-Cas14a-based approach. BMC Microbiol. 2025; 25(1): 188.
|
| [129] |
Li Y, Zhao Y, Yi Z, Han S. A CRISPR/Cas13a-based and hybridization chain reaction coupled evanescent wave biosensor for SARS-CoV-2 gene detection. Analyst. 2025; 150(7): 1367-1376.
|
| [130] |
Bojorquez-Velazquez E, Llamas-Garcia ML, Elizalde-Contreras JM, Zamora-Briseno JA, Ruiz-May E. Mass spectrometry approaches for SARS-CoV-2 detection: harnessing for application in food and environmental samples. Viruses. 2022; 14(5): 872.
|
| [131] |
Mercer A. Protection against severe infectious disease in the past. Pathog Glob Health. 2021; 115(3): 151-167.
|
| [132] |
Fang E, Liu X, Li M, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther. 2022; 7(1): 94.
|
| [133] |
Miller CJ, Smith SN, Pugatch M. Experimental and quasi-experimental designs in implementation research. Psychiatry Res. 2020; 283: 112452.
|
| [134] |
Hillary VE, Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol. 2023; 65(3): 311-325.
|
| [135] |
Guan X, Yang R, Zhang J, et al. Programmable multiplexed nucleic acid detection by harnessing specificity defect of CRISPR-Cas12a. Adv Sci (Weinh). 2025; 12(4): e2411021.
|
| [136] |
Wang H, Zhou G, Liu H, et al. Detection of porcine circovirus (PCV) using CRISPR-Cas12a/13a coupled with isothermal amplification. Viruses. 2024; 16(10): 1548.
|
| [137] |
Zhou Y, Zhao J, Wen J, Wu Z, Dong Y, Chen Y. Unsupervised learning-assisted acoustic-driven nano-lens holography for the ultrasensitive and amplification-free detection of viable bacteria. Adv Sci (Weinh). 2025; 12(2): e2406912.
|
| [138] |
Xu H, Lin C, Tang H, et al. A method for detecting five carbapenemases in bacteria based on CRISPR-Cas12a multiple RPA rapid detection technology. Infect Drug Resist. 2024; 17: 1599-1614.
|
| [139] |
American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43(Suppl 1): S14-S31.
|
| [140] |
Yadav R, Chaudhary JK, Jain N, et al. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. 2021; 10(4): 821.
|
| [141] |
Wu J, Gupta G, Buerki-Thurnherr T, Nowack B, Wick P. Bridging the gap: innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment. NanoImpact. 2024; 36: 100533.
|
| [142] |
Lee CY, Kim H, Degani I, et al. Empowering the on-site detection of nucleic acids by integrating CRISPR and digital signal processing. Nat Commun. 2024; 15(1): 6271.
|
| [143] |
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnol. 2021; 19(1): 348.
|
| [144] |
Jaybhaye SG, Chavhan RL, Hinge VR, Deshmukh AS, Kadam US. CRISPR-Cas assisted diagnostics of plant viruses and challenges. Virology. 2024; 597: 110160.
|
| [145] |
Tong X, Zhang K, Han Y, et al. Fast and sensitive CRISPR detection by minimized interference of target amplification. Nat Chem Biol. 2024; 20(7): 885-893.
|
| [146] |
Acharya S, Ansari AH, Kumar Das P, et al. PAM-flexible engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics. Nat Commun. 2024; 15(1): 5471.
|
| [147] |
Sukswai N, Khoury JD. Immunohistochemistry innovations for diagnosis and tissue-based biomarker detection. Curr Hematol Malig Rep. 2019; 14(5): 368-375.
|
| [148] |
Liu B, Wang Z, Gu M, Wang J, Tan J. Research into overcoming drug resistance in lung cancer treatment using CRISPR-Cas9 technology: a narrative review. Transl Lung Cancer Res. 2024; 13(8): 2067-2081.
|
| [149] |
Karimian A, Azizian K, Parsian H, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol. 2019; 234(8): 12267-12277.
|
| [150] |
Laurent M, Geoffroy M, Pavani G, Guiraud S. CRISPR-based gene therapies: from preclinical to clinical treatments. Cells. 2024; 13(10): 800.
|
| [151] |
Islam KU, Iqbal J. An update on molecular diagnostics for COVID-19. Front Cell Infect Microbiol. 2020; 10: 560616.
|
| [152] |
Zhang H, Xie L, Gao H, Pan H. Application of pre-amplification-based CRISPR-Cas nanostructured biosensors for bacterial detection. Nanomedicine (Lond). 2025; 20(8): 903-915.
|
| [153] |
Cottingham H, Judd LM, Wisniewski JA, et al. Targeted sequencing of Enterobacterales bacteria using CRISPR-Cas9 enrichment and Oxford Nanopore Technologies. mSystems. 2025; 10(2): e0141324.
|
| [154] |
Zheng L, Zheng C, Wang W, et al. A CRISPR/Cas12a-based colorimetric AuNPs biosensor for naked-eye detection of pathogenic bacteria in clinical samples. Colloids Surf B Biointerfaces. 2025; 250: 114541.
|
| [155] |
Zhao L, Zhao Z, Li N, Wang X. The nucleic acid detection using CRISPR/Cas biosensing system with micro-nano modality for point-of-care applications. Talanta. 2025; 286: 127457.
|
| [156] |
Liu J, Fu R, Zhang S, et al. Rapid and multi-target genotyping of Helicobacter pylori with digital microfluidics. Biosens Bioelectron. 2024; 256: 116282.
|
| [157] |
Wang Y, Chen J, Yang Z, et al. Advances in nucleic acid assays for infectious disease: the role of microfluidic technology. Molecules. 2024; 29(11): 2417.
|
| [158] |
He Q, Chen Q, Lian L, et al. Unraveling the influence of CRISPR/Cas13a reaction components on enhancing trans-cleavage activity for ultrasensitive on-chip RNA detection. Mikrochim Acta. 2024; 191(8): 466.
|
| [159] |
Lim J, Van AB, Koprowski K, Wester M, Valera E, Bashir R. Amplification-free, OR-gated CRISPR-Cascade reaction for pathogen detection in blood samples. Proc Natl Acad Sci U S A. 2025; 122(11): e2420166122.
|
| [160] |
Ma L, Lu M, Jia J, et al. Engineered crRNA for CRISPR/Cas-assisted biosensing. Trends Biotechnol. 2025; 43(1): 8-11.
|
| [161] |
Guo Y, Zhou Y, Duan H, et al. CRISPR/Cas-mediated “one to more” lighting-up nucleic acid detection using aggregation-induced emission luminogens. Nat Commun. 2024; 15(1): 8560.
|
| [162] |
Yin W, Hu K, Yang Y, et al. A propidium monoazide-assisted digital CRISPR/Cas12a assay for selective detection of live bacteria in sample. Anal Chem. 2024; 96(45): 17941-17949.
|
| [163] |
Li Y, Zhao L, Ma L, Bai Y, Feng F. Argonaute protein powered biosensing for pathogenic biosafety. Int J Biol Macromol. 2025; 305(Pt 2): 141321.
|
| [164] |
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb). 2024; 60(78): 10805-10821.
|
| [165] |
Lamb CH, Pitre EM, Ajufo S, et al. Quantification of influenza virus mini viral RNAs using Cas13. RNA. 2024; 31(1): 126-138.
|
| [166] |
Hassan YM, Mohamed AS, Hassan YM, El-Sayed WM. Recent developments and future directions in point-of-care next-generation CRISPR-based rapid diagnosis. Clin Exp Med. 2025; 25(1): 33.
|
| [167] |
Li G, Zhou J, Gao N, Liu R, Shen J. Establishment of a rapid detection method for Mycoplasma pneumoniae based on RPA-CRISPR-Cas12a technology. Clin Chim Acta. 2025; 564: 119906.
|
| [168] |
Fu J, Mo R, Li Z, et al. An extraction-free one-pot assay for rapid detection of Klebsiella pneumoniae by combining RPA and CRISPR/Cas12a. Biosens Bioelectron. 2025; 267: 116740.
|
| [169] |
Gao H, Zhang H, Qi X, et al. CRISPR/Cas12a dual-mode biosensor for Staphylococcus aureus detection via enzyme-free isothermal amplification. Talanta. 2025; 282: 127013.
|
| [170] |
Jung JK, Dreyer KS, Dray KE, et al. Developing, characterizing, and modeling CRISPR-based point-of-use pathogen diagnostics. ACS Synth Biol. 2025; 14(1): 129-147.
|
| [171] |
Zhang L, Wang H, Yang S, et al. High-throughput and integrated CRISPR/Cas12a-based molecular diagnosis using a deep learning enabled microfluidic system. ACS Nano. 2024; 18(35): 24236-24251.
|
| [172] |
Han X, Song D, Xu W, Lu L, Zhu A, Long F. CRISPR/Cas12a powered air-displacement enhanced evanescent wave fluorescence fiber-embedded microfluidic biochip for nucleic acid amplification-free detection of Escherichia coli O157:h7. J Hazard Mater. 2024; 469: 134037.
|
| [173] |
Wang Y, Chen H, Pan Q, Wang J, Jiao X, Zhang Y. Development and evaluation of rapid and accurate one-tube RPA-CRISPR-Cas12b-based detection of mcr-1 and tet(X4). Appl Microbiol Biotechnol. 2024; 108(1): 345.
|
| [174] |
Sun H, Zhang X, Ma H, et al. A programmable sensitive platform for pathogen detection based on CRISPR/Cas12a-hybridization chain reaction-poly T-Cu. Anal Chim Acta. 2024; 1317: 342888.
|
| [175] |
He Z, Chen W, Hu K, et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat Nanotechnol. 2024; 19(9): 1386-1398.
|
| [176] |
Contextual AI models for context-specific prediction in biology. Nat Methods. 2024; 21(8): 1420-1421.
|
| [177] |
Cai D, Wang Y, Zhang Z, et al. Droplet pairing-merging enabled digital RPA-CRISPR/Cas12a (DIMERIC) assay for rapid and precise quantification of hepatitis B virus DNA. Biosens Bioelectron. 2025; 276: 117256.
|
| [178] |
Alsharksi AN, Sirekbasan S, Gurkok-Tan T, Mustapha A. From tradition to innovation: diverse molecular techniques in the fight against infectious diseases. Diagnostics (Basel). 2024; 14(24): 2876.
|
| [179] |
Xie R, Shen J, Yang H. Multiple nucleic acids testing on a low-cost digital microfluidic platform for respiratory bacteria (MNAT-DMF). Annu Int Conf IEEE Eng Med Biol Soc. 2024; 2024: 1-4.
|
| [180] |
Mamatha Bhanu LS, Kataki S, Chatterjee S. CRISPR: new promising biotechnological tool in wastewater treatment. J Microbiol Methods. 2024; 227: 107066.
|
| [181] |
Perez AA, Vazquez-Meves G, Hunter ME. Early detection of wildlife disease pathogens using CRISPR-Cas system methods. CRISPR J. 2024; 7(6): 327-342.
|
| [182] |
Higgins SA, Kara Murdoch F, Clifton JM, et al. CRISPR-Cas9-mediated barcode insertion into Bacillus thuringiensis for surrogate tracking. Microbiol Spectr. 2024; 12(8): e0000324.
|
| [183] |
Correction to ‘The P10K database: a data portal for the protist 10 000 genomes project’. Nucleic Acids Res. 2024; 52(D1): D1699.
|
| [184] |
Kahn B, Brown L, Foege W, Gayle H, eds. Framework for Equitable Allocation of COVID-19 Vaccine. National Academies Press; 2020.
|
| [185] |
Jing W, Zhang T, Min X, et al. CHAMP: a centrifugal microfluidics-based CRISPR/Cas12b-combined real-time LAMP one-pot method for Mycoplasma pneumoniae infection diagnosis. ACS Omega. 2024; 9(37): 38989-38997.
|
| [186] |
Ning B, Yu T, Zhang S, et al. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci Adv. 2021; 7(2): eabe3703.
|
| [187] |
Troisi R, Napolitano V, Rossitto E, et al. Steric hindrance and structural flexibility shape the functional properties of a guanine-rich oligonucleotide. Nucleic Acids Res. 2023; 51(16): 8880-8890.
|
| [188] |
Qu Y, Huang K, Yin M, et al. CRISPR-GPT for agentic automation of gene-editing experiments. Nat Biomed Eng. Published online July 30, 2025.
|
| [189] |
Ruffolo JA, Nayfach S, Gallagher J, et al. Design of highly functional genome editors by modelling CRISPR-Cas sequences. Nature. 2025; 645(8080): 518-525.
|
| [190] |
Eisenstein M. AI-enhanced protein design makes proteins that have never existed. Nat Biotechnol. 2023; 41(3): 303-305.
|
| [191] |
Xu J, Zhou T, Xue D, et al. Integrating recombinase polymerase amplification with CRISPR/Cas9-initiated nicking-rolling circle amplification in Staphylococcus aureus assay. Chem Commun (Camb). 2024; 60(40): 5314-5317.
|
| [192] |
Gu A, Dong Y, Li L, Yu D, Zhang J, Chen Y. CRISPR/Cas12a and hybridization chain reaction-coregulated magnetic relaxation switching iosensor for sensitive detection of viable Salmonella in animal-derived foods. J Agric Food Chem. 2024; 72(36): 20130-20139.
|
| [193] |
Du Y, Liu X, Gao H, et al. Rapid and one-tube detection of human metapneumovirus using the RT-RPA and CRISPR/Cas12a. J Virol Methods. 2024; 329: 115001.
|
| [194] |
Wang T, Zeng H, Kang J, et al. Establishment of a nucleic acid detection method for norovirus GII.2 genotype based on RT-RPA and CRISPR/Cas12a-LFS. Pol J Microbiol. 2024; 73(2): 253-262.
|
| [195] |
Wang Y, Peng Y, Liu S, Li M, Pei X, Tong Y. CRISPR/Cas12a coupled with loop-mediated isothermal amplification and lateral flow assay for SARS-CoV-2 detection. Anal Methods. 2024; 16(35): 5971-5981.
|
| [196] |
Yang X, Xu K, Li S, et al. Novel methods for the rapid and sensitive detection of Nipah virus based on a CRISPR/Cas12a system. Analyst. 2024; 149(9): 2586-2593.
|
| [197] |
Zhao Y, Yu Q, Duan M, et al. Locking-fluorescence signals regulated CRISPR/Cas12a biosensor based on metal-organic framework for sensitive detection of Salmonella typhimurium. J Agric Food Chem. 2024; 72(46): 25987-25996.
|
| [198] |
Zhao Y, Li Z, Li T, et al. SlipChip enables the integration of CRISPR-Cas12a and RPA for fast and stand-alone HPV detection. Anal Chem. 2024; 96(52): 20602-20611.
|
| [199] |
Meng JN, Xu ZK, Li PR, et al. Universal and naked-eye diagnostic platform for emetic Bacillus cereus based on RPA-assisted CRISPR/Cas12a. J Agric Food Chem. 2024; 72(15): 8823-8830.
|
| [200] |
Deivarajan HR, Elamurugan V, Sivashanmugam P, et al. Development and clinical evaluation of a CRISPR/Cas12a-based nucleic acid detection platform for the diagnosis of keratomycoses. Ophthalmol Sci. 2024; 4(5): 100522.
|
| [201] |
Zhang J, Qin L, Chang Y, et al. One-pot assay for rapid detection of Stenotrophomonas maltophilia by RPA-CRISPR/Cas12a. ACS Synth Biol. 2024; 13(10): 3400-3412.
|
| [202] |
Zhao Y, Dai J, Zhang Z, et al. CRISPR-Cas13a-based lateral flow assay for detection of bovine leukemia virus. Animals (Basel). 2024; 14(22)
|
| [203] |
Chen S, Li Y, Liao R, et al. Detection of avian leukosis virus subgroup J (ALV-J) using RAA and CRISPR-Cas13a combined with fluorescence and lateral flow assay. Int J Mol Sci. 2024; 25(19)
|
| [204] |
Liu H, Xu L, Xiu Y, et al. A CRISPR/Cas13a-assisted precise and portable test for Brucella nucleic acid detection. Front Cell Infect Microbiol. 2025; 15: 1545953.
|
| [205] |
Wu YX, Sadiq S, Jiao XH, et al. CRISPR/Cas13a-mediated visual detection: a rapid and robust method for early detection of Nosema bombycis in silkworms. Insect Biochem Mol Biol. 2024; 175: 104203.
|
| [206] |
Maiden MC, Jansen van Rensburg MJ, Bray JE, et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol. 2013; 11(10): 728-736.
|
| [207] |
Zhou W, Huang J, Yang X, Zhang X. Detection of dsRNA with fluorescence in situ hybridization (FISH). Methods Mol Biol. 2024; 2771: 35-38.
|
| [208] |
Calorenni P, Leonardi AA, Sciuto EL, et al. PCR-free innovative strategies for SARS-CoV-2 detection. Adv Healthc Mater. 2023; 12(25): e2300512.
|
| [209] |
Sule WF, Oluwayelu DO. Real-time RT-PCR for COVID-19 diagnosis: challenges and prospects. Pan Afr Med J. 2020; 35(Suppl 2): 121.
|
| [210] |
Vynck M, Chen Y, Gleerup D, et al. Digital PCR partition classification. Clin Chem. 2023; 69(9): 976-990.
|
| [211] |
Acharya B, Acharya A, Gautam S, et al. Advances in diagnosis of tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep. 2020; 47(5): 4065-4075.
|
| [212] |
Boonbanjong P, Treerattrakoon K, Waiwinya W, Pitikultham P, Japrung D. Isothermal amplification technology for disease diagnosis. Biosensors (Basel). 2022; 12(9): 677.
|
| [213] |
Lin CW, Tsai YH, Lu YP, et al. Application of a novel biosensor for salivary conductivity in detecting chronic kidney disease. Biosensors (Basel). 2022; 12(3): 178.
|
| [214] |
Quy PN, Fukuyama K, Kanai M, et al. Inter-assay variability of next-generation sequencing-based gene panels. BMC Med Genomics. 2022; 15(1): 86.
|
| [215] |
Feng H, Zheng T, Li M, et al. Droplet-based microfluidics systems in biomedical applications. Electrophoresis. 2019; 40(11): 1580-1590.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.