Distant metastases of melanoma exhibit varying extent of intrapatient proteogenomic heterogeneity

Beata Szeitz , Yanick Paco Hagemeijer , Zoltan Gabor Pahi , Zsuzsanna Ujfaludi , Magdalena Kuras , Jimmy Rodriguez , Viktoria Doma , Reka Mohacsi , Magdolna Herold , Zoltan Herold , Zsolt Horvath , Indira Pla , Yutaka Sugihara , Bo Baldetorp , Henrik Lindberg , Henriett Oskolas , Melinda Rezeli , Jeovanis Gil , Roger Appelqvist , Lajos V. Kemeny , Jessica Guedes , Johan Malm , Aniel Sanchez , Imre Miklos Boros , Istvan Balazs Nemeth , Victor Guryev , Tibor Pankotai , Krzysztof Pawłowski , Elisabet Wieslander , Attila Marcell Szasz , David Fenyö , Peter Horvatovich , Jozsef Timar , György Marko-Varga , Lazaro Hiram Betancourt

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (10) : e70477

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (10) : e70477 DOI: 10.1002/ctm2.70477
RESEARCH ARTICLE

Distant metastases of melanoma exhibit varying extent of intrapatient proteogenomic heterogeneity

Author information +
History +
PDF

Abstract

Background: Metastatic melanoma is a highly aggressive disease with poor survival rates despite recent therapeutic advancements with immunotherapy. The proteomic landscape of advanced melanoma remains poorly understood, especially regarding proteomic heterogeneity across metastases within patients.

Methods: We collected 83 melanoma metastases from 19 different metastatic sites in 24 patients with advanced metastatic melanoma almost exclusively from the pre-immunotherapy era, using semi-rapid autopsies. The metastases were subjected to histopathological evaluation, RNA-sequencing and mass spectrometry-based proteomics for protein quantitation and non-reference peptide (NRP) sequence detection using a proteogenomic data integration approach.

Results: NRPs associated with mutations frequently occurred in proteins related to focal adhesion, vesicle-mediated transport, MAPK signalling and immune response pathways across the cohort. Intrapatient heterogeneity was negligible when considering morphology and driver gene mutation status but was substantial at the proteogenomic level. This heterogeneity was not driven by metastasis location, albeit liver metastases exhibited distinct proteogenomic patterns, including upregulation of metabolic pathways. Cluster analysis outlined four proteomic clusters (C1–4) of the metastases, characterised by the upregulation of cell cycle and RNA-splicing (C1), mitochondrial processes (C3), extracellular matrix (ECM) and immune pathways (C2) and ECM and vesicle-mediated transport pathways (C4). Around two-thirds of patients had metastases that had strongly distinct phenotypes. Patients in our cohort whose metastases were primarily assigned to clusters C1 and C3 exhibited shorter overall survival than patients whose metastases were categorised mainly into the C2 and C4 clusters.

Conclusion: Our unique multi-metastasis cohort captured the proteogenomic heterogeneity of immunotherapy-naïve melanoma distant metastases, establishing a foundation for future studies aimed at identifying novel therapeutic targets to complement current immunotherapies.

Keywords

distant metastasis / histopathology / mass spectrometry-based proteomics / melanoma / post mortem / proteogenomics / RNA-sequencing

Cite this article

Download citation ▾
Beata Szeitz, Yanick Paco Hagemeijer, Zoltan Gabor Pahi, Zsuzsanna Ujfaludi, Magdalena Kuras, Jimmy Rodriguez, Viktoria Doma, Reka Mohacsi, Magdolna Herold, Zoltan Herold, Zsolt Horvath, Indira Pla, Yutaka Sugihara, Bo Baldetorp, Henrik Lindberg, Henriett Oskolas, Melinda Rezeli, Jeovanis Gil, Roger Appelqvist, Lajos V. Kemeny, Jessica Guedes, Johan Malm, Aniel Sanchez, Imre Miklos Boros, Istvan Balazs Nemeth, Victor Guryev, Tibor Pankotai, Krzysztof Pawłowski, Elisabet Wieslander, Attila Marcell Szasz, David Fenyö, Peter Horvatovich, Jozsef Timar, György Marko-Varga, Lazaro Hiram Betancourt. Distant metastases of melanoma exhibit varying extent of intrapatient proteogenomic heterogeneity. Clinical and Translational Medicine, 2025, 15(10): e70477 DOI:10.1002/ctm2.70477

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-263.

[2]

Hynes MC, Nguyen P, Groome PA, et al. A population-based validation study of the 8th edition UICC/AJCC TNM staging system for cutaneous melanoma. BMC Cancer. 2022; 22(1): 720.

[3]

Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500(7463): 415-421.

[4]

Shannan B, Perego M, Somasundaram R, Herlyn M. Heterogeneity in melanoma. In: Kaufman HL, Mehnert JM, eds. Melanoma [Internet]. Springer International Publishing; 2016: 1-15.

[5]

Leonardi GC, Falzone L, Salemi R, et al. Cutaneous melanoma: from pathogenesis to therapy (review). Int J Oncol. 2018; 52(4): 1071-1080.

[6]

Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014; 371(20): 1877-1888.

[7]

Eroglu Z, Ribas A. Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther Adv Med Oncol. 2016; 8(1): 48-56.

[8]

Wolchok JD, Chiarion-Sileni V, Rutkowski P, et al. Final, 10-year outcomes with nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2025; 392(1): 11-22.

[9]

Long GV, Carlino MS, McNeil C, et al. Pembrolizumab versus ipilimumab for advanced melanoma: 10-year follow-up of the phase III KEYNOTE-006 study. Ann Oncol. 2024; 35(12): 1191-1199.

[10]

Switzer B, Puzanov I, Skitzki JJ, Hamad L, Ernstoff MS. Managing metastatic melanoma in 2022: a clinical review. JCO Oncol Pract. 2022; 18(5): 335-351.

[11]

Dummer R, Welti M, Ramelyte E. The role of triple therapy and therapy sequence in treatment of BRAF-mutant metastatic melanoma. Response to overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. J Transl Med. 2023; 21(1): 529.

[12]

Albrecht LJ, Dimitriou F, Grover P, et al. Anti-PD-(L)1 plus BRAF/MEK inhibitors (triplet therapy) after failure of immune checkpoint inhibition and targeted therapy in patients with advanced melanoma. Eur J Cancer. 2024; 202: 113976.

[13]

Hugo W, Shi H, Sun L, et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 2015; 162(6): 1271-1285.

[14]

Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal. 2024; 22(1): 109.

[15]

Lin Z, Meng X, Wen J, et al. Intratumor heterogeneity correlates with reduced immune activity and worse survival in melanoma patients. Front Oncol. 2020; 10: 596493.

[16]

Ng MF, Simmons JL, Boyle GM. Heterogeneity in melanoma. Cancers. 2022; 14(12): 3030.

[17]

Szadai L, Guedes J, de S, Woldmar N, et al. Mitochondrial and immune response dysregulation in melanoma recurrence. Clin Transl Med. 2023; 13(11): e1495.

[18]

Harel M, Ortenberg R, Varanasi SK, et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell. 2019; 179(1): 236-250. e18.

[19]

Beck L, Harel M, Yu S, et al. Clinical proteomics of metastatic melanoma reveals profiles of organ specificity and treatment resistance. Clin Cancer Res. 2021; 27(7): 2074-2086.

[20]

Betancourt LH, Gil J, Sanchez A, et al. The human melanoma proteome atlas—complementing the melanoma transcriptome. Clin Transl Med. 2021; 11(7): e451.

[21]

Geukens T, Maetens M, Hooper JE, et al. Research autopsy programmes in oncology: shared experience from 14 centres across the world. J Pathol. 2024; 263(2): 150-165.

[22]

Doma V, Kárpáti S, Rásó E, Barbai T, Tímár J. Dynamic and unpredictable changes in mutant allele fractions of BRAF and NRAS during visceral progression of cutaneous malignant melanoma. BMC Cancer. 2019; 19(1): 786.

[23]

Pipek O, Vizkeleti L, Doma V, et al. The driverless triple-wild-type (BRAF, RAS, KIT) cutaneous melanoma: whole genome sequencing discoveries. Cancers. 2023; 15(6): 1712.

[24]

Betancourt LH, Gil J, Kim Y, et al. The human melanoma proteome atlas – defining the molecular pathology. Clin Transl Med. 2021; 11(7): e473.

[25]

Papp O, Doma V, Gil J, et al. Organ specific copy number variations in visceral metastases of human melanoma. Cancers. 2021; 13(23): 5984.

[26]

Vízkeleti L, Papp O, Doma V, et al. Identification of genetic fingerprint of type I interferon therapy in visceral metastases of melanoma. Sci Rep. 2024; 14(1): 26540.

[27]

Kim Y, Doma V, Çakır U, et al. Mitochondrial proteome landscape unveils key insights into melanoma severity and treatment strategies. Cancer. 2025; 131(13): e35897.

[28]

Brandsma CA, Guryev V, Timens W, et al. Integrated proteogenomic approach identifying a protein signature of COPD and a new splice variant of SORBS1. Thorax. 2020; 75(2): 180-183.

[29]

Betancourt LH, Sanchez A, Pla I, et al. Quantitative assessment of urea in-solution Lys-C/trypsin digestions reveals superior performance at room temperature over traditional proteolysis at 37°C. J Proteome Res. 2018; 17(7): 2556-2561.

[30]

Kuras M, Betancourt LH, Rezeli M, et al. Assessing automated sample preparation technologies for high-throughput proteomics of frozen well characterized tissues from Swedish biobanks. J Proteome Res. 2019; 18(1): 548-556.

[31]

Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015; 161(7): 1681-1696.

[32]

Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012; 2(5): 401-404.

[33]

Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6(269): pl1.

[34]

de Bruijn I, Kundra R, Mastrogiacomo B, et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023; 83(23): 3861-3867.

[35]

Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015; 350(6257): 207-211.

[36]

Gide TN, Quek C, Menzies AM, et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell. 2019; 35(2): 238-255. e6.

[37]

Liu D, Schilling B, Liu D, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019; 25(12): 1916-1927.

[38]

Campbell KM, Amouzgar M, Pfeiffer SM, et al. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. Cancer Cell. 2023; 41(4): 791-806. e4.

[39]

Byrska-Bishop M, Evani US, Zhao X, et al. High-coverage whole-genome sequencing of the expanded 1000 genomes project cohort including 602 trios. Cell. 2022; 185(18): 3426-3440. e19.

[40]

Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020; 581(7809): 434-443.

[41]

Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015; 347(6220): 1260419.

[42]

Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006; 34: D668-D672. Database issue.

[43]

Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018; 46(D1): D1074-D1082.

[44]

Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J. 2022; 289(5): 1352-1368.

[45]

Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018; 24(10): 1550-1558.

[46]

Lam KY, Tang V. Metastatic tumors to the spleen: a 25-year clinicopathologic study. Arch Pathol Lab Med. 2000; 124(4): 526-530.

[47]

Compérat E, Bardier-Dupas A, Camparo P, Capron F, Charlotte F. Splenic metastases: clinicopathologic presentation, differential diagnosis, and pathogenesis. Arch Pathol Lab Med. 2007; 131(6): 965-969.

[48]

Ruggles KV, Krug K, Wang X, et al. Methods, tools and current perspectives in proteogenomics. Mol Cell Proteomics MCP. 2017; 16(6): 959-981.

[49]

Ricci C, Dika E, Ambrosi F, Lambertini M, Veronesi G, Barbara C. Cutaneous melanomas: a single center experience on the usage of immunohistochemistry applied for the diagnosis. Int J Mol Sci. 2022; 23(11): 5911.

[50]

Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016; 165(3): 535-550.

[51]

Ferreira PG, Muñoz-Aguirre M, Reverter F, et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat Commun. 2018; 9(1): 490.

[52]

Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013; 499(7457): 214-218.

[53]

Schiantarelli J, Benamar M, Park J, et al. Genomic mediators of acquired resistance to immunotherapy in metastatic melanoma. Cancer Cell. 2025; 43(2): 308-316. e6.

[54]

McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017; 168(4): 613-628.

[55]

Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct Target Ther. 2021; 6(1): 424.

[56]

Van Allen EM, Wagle N, Sucker A, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014; 4(1): 94-109.

[57]

Yao Z, Yaeger R, Rodrik-Outmezguine VS, et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature. 2017; 548(7666): 234-238.

[58]

Rajkumar S, Berry D, Heney KA, et al. Melanomas with concurrent BRAF non-p.V600 and NF1 loss-of-function mutations are targetable by BRAF/MEK inhibitor combination therapy. Cell Rep. 2022; 39(1): 110634.

[59]

Kurz S, Thieme R, Amberg R, et al. The anti-tumorigenic activity of A2M-A lesson from the naked mole-rat. PLoS ONE. 2017; 12(12): e0189514.

[60]

Liu J, Xu J, Luo B, et al. Immune landscape and an RBM38-associated immune prognostic model with laboratory verification in malignant melanoma. Cancers. 2022; 14(6): 1590.

[61]

Westbrook VA, Schoppee PD, Diekman AB, et al. Genomic organization, incidence, and localization of the SPAN-x family of cancer-testis antigens in melanoma tumors and cell lines. Clin Cancer Res. 2004; 10(1 pt 1): 101-112.

[62]

Castro A, Ozturk K, Pyke RM, Xian S, Zanetti M, Carter H. Elevated neoantigen levels in tumors with somatic mutations in the HLA-A, HLA-B, HLA-C and B2M genes. BMC Med Genomics. 2019; 12(suppl 6): 107.

[63]

Jiang N, Yu Y, Wu D, et al. HLA and tumour immunology: immune escape, immunotherapy and immune-related adverse events. J Cancer Res Clin Oncol. 2023; 149(2): 737-747.

[64]

Lauss M, Phung B, Borch TH, et al. Molecular patterns of resistance to immune checkpoint blockade in melanoma. Nat Commun. 2024; 15(1): 3075.

[65]

Obrador E, Salvador R, López-Blanch R, et al. Melanoma in the liver: oxidative stress and the mechanisms of metastatic cell survival. Semin Cancer Biol. 2021; 71: 109-121.

[66]

Chen W, Geng D, Chen J, et al. Roles and mechanisms of aberrant alternative splicing in melanoma—implications for targeted therapy and immunotherapy resistance. Cancer Cell Int. 2024; 24(1): 101.

[67]

Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018; 554(7693): 544-548.

[68]

Popovic A, Tartare-Deckert S. Role of extracellular matrix architecture and signaling in melanoma therapeutic resistance. Front Oncol. 2022; 12: 924553.

[69]

Zheng DX, Bozym DJ, Tarantino G, Sullivan RJ, Liu D, Jenkins RW. Overcoming resistance mechanisms to melanoma immunotherapy. Am J Clin Dermatol. 2025; 26(1): 77-96.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/