Immunometabolism: The role of gut-derived microbial metabolites in optimising immune response during checkpoint inhibitor therapy

Agnieszka Beata Malczewski , Jermaine Ig Coward , Natkunam Ketheesan , Severine Navarro

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (9) : e70472

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (9) : e70472 DOI: 10.1002/ctm2.70472
REVIEW

Immunometabolism: The role of gut-derived microbial metabolites in optimising immune response during checkpoint inhibitor therapy

Author information +
History +
PDF

Abstract

One sentence summary: This review focusses on microbiome-derived metabolites and their role in immunometabolism and the enhancement of checkpoint inhibitor responses.

Cite this article

Download citation ▾
Agnieszka Beata Malczewski, Jermaine Ig Coward, Natkunam Ketheesan, Severine Navarro. Immunometabolism: The role of gut-derived microbial metabolites in optimising immune response during checkpoint inhibitor therapy. Clinical and Translational Medicine, 2025, 15(9): e70472 DOI:10.1002/ctm2.70472

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther. 2023; 8(1): 320.

[2]

Atkins MB, Ascierto PA, Feltquate D, et al. Society for Immunotherapy of Cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors with targeted therapies. J Immunother Cancer. 2023; 11(3): e005923.

[3]

Lei Y, Li X, Huang Q, Zheng X, Liu M. Progress and Challenges of Predictive Biomarkers for Immune Checkpoint Blockade. Front Oncol. 2021; 11: 617335.

[4]

Malczewski AB, Navarro S, Coward JI, Ketheesan N. Microbiome-derived metabolome as a potential predictor of response to cancer immunotherapy. J Immunother Cancer. 2020; 8(2): e001383.

[5]

Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer. 2021; 124(2): 359-367.

[6]

Li X, Zhang S, Guo G, Han J, Yu J. Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine. 2022; 82: 104163.

[7]

Spencer CN, McQuade JL, Gopalakrishnan V, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 2021; 374(6575): 1632-1640.

[8]

Macandog AD, Catozzi C, Capone M, et al. Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients. Cell Host Microbe. 2024; 32(11): 2004-2018.

[9]

Huldani H, Malviya J, Rodrigues P, et al. Discovering the strength of immunometabolism in cancer therapy: employing metabolic pathways to enhance immune responses. Cell Biochem Funct. 2024; 42(2): e3934.

[10]

Huo R, Xu Q, You Y, et al. Bifidobacterium boosts anti-PD-1 effectiveness through JAK pathway in hepatocellular carcinoma. NPJ Precis Oncol. 2025; 9(1): 251.

[11]

McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 2019; 20(2): e77-e91.

[12]

Routy B, Jackson T, Mählmann L, et al. Melanoma and microbiota: current understanding and future directions. Cancer Cell. 2024; 42(1): 16-34.

[13]

González-Brito A, Uribe-Herranz M. The potential role of short chain fatty acids improving ex vivo T and CAR-T cell fitness and expansion for cancer immunotherapies. Front Immunol. 2023; 14: 1083303.

[14]

Luu M, Riester Z, Baldrich A, et al. Microbial short-chain fatty acids modulate CD8(+) T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 2021; 12(1): 4077.

[15]

Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer. 2022; 10(7): e004147.

[16]

Bender MJ, McPherson AC, Phelps CM, et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell. 2023; 186(9): 1846-1862. e26.

[17]

Baker S, Rutter J. Metabolites as signalling molecules. Nat Rev Mol Cell Biol. 2023; 24(5): 355-374.

[18]

Li H, Zhao A, Li M, Shi L, Han Q, Hou Z. Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Front Immunol. 2022; 13: 1046755.

[19]

Azuma K, Xiang H, Tagami T, et al. Clinical significance of plasma-free amino acids and tryptophan metabolites in patients with non-small cell lung cancer receiving PD-1 inhibitor: a pilot cohort study for developing a prognostic multivariate model. J Immunother Cancer. 2022; 10(5): e004420.

[20]

Botticelli A, Vernocchi P, Marini F, et al. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J Transl Med. 2020; 18(1): 49.

[21]

Kocher F, Amann A, Zimmer K, et al. High indoleamine-2,3-dioxygenase 1 (IDO) activity is linked to primary resistance to immunotherapy in non-small cell lung cancer (NSCLC). Transl Lung Cancer Res. 2021; 10(1): 304-313.

[22]

Mock A, Zschäbitz S, Kirsten R, et al. Serum very long-chain fatty acid-containing lipids predict response to immune checkpoint inhibitors in urological cancers. Cancer Immunol Immunother. 2019; 68(12): 2005-2014.

[23]

Triozzi PL, Stirling ER, Song Q, et al. Circulating immune bioenergetic, metabolic, and genetic signatures predict melanoma patients' response to anti-PD-1 immune checkpoint blockade. Clin Cancer Res. 2022; 28(6): 1192-1202.

[24]

Xu E, Ji B, Jin K, Chen Y. Branched-chain amino acids catabolism and cancer progression: focus on therapeutic interventions. Front Oncol. 2023; 13: 1220638.

[25]

Wang L, He L, Xu L, Li S. Short-chain fatty acids: bridges between diet, gut microbiota, and health. J Gastroenterol Hepatol. 2024; 39(9): 1728-1736.

[26]

Tran M, Huh J, Devlin A. The role of gut microbial metabolites in the T cell lifecycle. Nat Immunol. 2025; 26(8): 1246-1257.

[27]

Shiratori H, Oguchi H, Isobe Y, et al. Gut microbiota-derived lipid metabolites facilitate regulatory T cell differentiation. Sci Rep. 2023; 13(1): 8903.

[28]

Golpour F, Abbasi-Alaei M, Babaei F, et al. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother. 2023; 163: 114763.

[29]

Asseri AH, Bakhsh T, Abuzahrah SS, Ali S, Rather IA. The gut dysbiosis-cancer axis: illuminating novel insights and implications for clinical practice. Front Pharmacol. 2023; 14: 1208044.

[30]

Kim C. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol. 2023; 20(4): 341-350.

[31]

Clarke J, Boussioutas A, Flanders B, et al. Can butyrate prevent colon cancer? The AusFAP study: a randomised, crossover clinical trial. Contemp Clin Trials Commun. 2023; 32: 101092.

[32]

Kaźmierczak-Siedlecka K, Marano L, Merola E, Roviello F, Połom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front Cell Infect Microbiol. 2022; 12: 1023806.

[33]

He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8(+) T cell immunity. Cell Metab. 2021; 33(5): 988-1000. e7.

[34]

Wu Y, Han W, Tang X, et al. B7-H3 suppresses CD8(+) T cell immunologic function through reprogramming glycolytic metabolism. J Cancer. 2024; 15(9): 2505-2517.

[35]

Wang J, Yang Y, Shao F, et al. Acetate reprogrammes tumour metabolism and promotes PD-L1 expression and immune evasion by upregulating c-Myc. Nat Metab. 2024; 6(5): 914-932.

[36]

Shi Y, Zhang H, Miao C. Metabolic reprogram and T cell differentiation in inflammation: current evidence and future perspectives. Cell Death Discov. 2025; 11(1): 123.

[37]

Gavil N, Cheng K, Masopust D. Resident memory T cells and cancer. Immunity. 2024; 57(8): 1734-1751.

[38]

Min D, Fiedler J, Anandasabapathy N. Tissue-resident memory cells in antitumoral immunity and cancer immunotherapy. Curr Opin Immunol. 2024; 91: 102499.

[39]

Jaiswal A, Verma A, Dannenfelser R, et al. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell. 2022; 40(5): 524-544.

[40]

Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8(+) T Cells. Immunity. 2019; 51(2): 285-297. e5.

[41]

Coutzac C, Jouniaux J, Paci A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 2020; 11(1): 2168.

[42]

Nomura M, Nagatomo R, Doi K, et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020; 3(4): e202895.

[43]

Bell KJ, Saad S, Tillett BJ, et al. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome. 2022; 10(1): 9.

[44]

Duscha A, Gisevius B, Hirschberg S, et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. cell. 2020; 180(6): 1067-1080. e16.

[45]

Sabit H, Pawlik TM, Radwan F, et al. Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery. Mol Cancer. 2025; 24(1): 160.

[46]

Diaz-Ruano AB, Gomez-Jimenez E, Llamas-Jimenez G, et al. Advances in the use of nanoparticles for specific cell-target delivery of anti-cancer agents. Life Sci. 2025; 371: 123604.

[47]

Han Y, Zheng W, Zhang Y, et al. Oxaliplatin-loaded natural killer cell-derived exosomes for a safe and efficient chemoimmunotherapy of colorectal cancer. J Pharm Sci. 2025; 114(6): 103783.

[48]

Maleki H, Aiyelabegan HT, Javadi P, et al. Nanotechnology-mediated precision drug delivery strategies for breast cancer treatment. Biomed Pharmacother. 2025; 188: 118224.

[49]

Zhang Z, Rana I, Nam J. Metal coordination polymer nanoparticles for cancer therapy. Essays Biochem. 2025; 69(2): EBC20253012.

[50]

Passarelli A, Pisano C, Cecere SC, et al. Targeting immunometabolism mediated by the IDO1 Pathway: a new mechanism of immune resistance in endometrial cancer. Front Immunol. 2022; 13: 953115.

[51]

Huang X, Zhang F, Wang X, Liu K. The role of indoleamine 2, 3-dioxygenase 1 in regulating tumor microenvironment. Cancers (Basel). 2022; 14(11).

[52]

Karayama M, Masuda J, Mori K, et al. Comprehensive assessment of multiple tryptophan metabolites as potential biomarkers for immune checkpoint inhibitors in patients with non-small cell lung cancer. Clin Transl Oncol. 2021; 23(2): 418-423.

[53]

Opitz CA, Somarribas Patterson LF, Mohapatra SR, et al. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer. 2020; 122(1): 30-44.

[54]

Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019; 18(5): 379-401.

[55]

Hoglund E, Overli O, Winberg S. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front Endocrinol (Lausanne). 2019; 10: 158.

[56]

Seo S, Kwon B. Immune regulation through tryptophan metabolism. Exp Mol Med. 2023; 55(7): 1371-1379.

[57]

Marsden P. The curious case of tryptophan in pregnancy. J Clin Invest. 2022; 132(20): e164219.

[58]

Tsuji A, Ikeda Y, Yoshikawa S, et al. The tryptophan and kynurenine pathway involved in the development of immune-related diseases. Int J Mol Sci. 2023; 24(6): 5742.

[59]

Vilbert M, Koch EC, Rose AAN, et al. Analysis of the circulating metabolome of patients with cutaneous, mucosal and uveal melanoma reveals distinct metabolic profiles with implications for response to immunotherapy. Cancers (Basel). 2023; 15(14): 3708.

[60]

Fujiwara Y, Kato S, Nesline MK, et al. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev. 2022; 110: 102461.

[61]

Günther J, Däbritz J, Wirthgen E. Limitations and off-target effects of tryptophan-related IDO inhibitors in cancer treatment. Front Immunol. 2019; 10: 1801.

[62]

Long GV, Dummer R, Hamid O, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019; 20(8): 1083-1097.

[63]

Zhou D, Duan Z, Li Z, Ge F, Wei R, Kong L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front Pharmacol. 2022; 13: 1091779.

[64]

Lian X, Yang K, Li R, et al. Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Mol Cancer. 2022; 21(1): 27.

[65]

Rangel Rivera G, et al. Fundamentals of T cell metabolism and strategies to enhance cancer immunotherapy. Front Immunol. 2021; 12: 645242.

[66]

Dang Q, Li B, Jin B, et al. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer. 2024; 23(1): 72.

[67]

Liang Y, Pan C, Yin T, et al. Branched-chain amino acid accumulation fuels the senescence-associated secretory phenotype. Adv Sci (Weinh). 2024; 11(2): e2303489.

[68]

Wang W, Bai L, Li W, Cui J. The lipid metabolic landscape of cancers and new therapeutic perspectives. Front Oncol. 2020; 10: 605154.

[69]

Oberholtzer N, Quinn KM, Chakraborty P, Mehrotra S. New developments in T cell immunometabolism and implications for cancer immunotherapy. Cells. 2022; 11(4): 708.

[70]

Ghini V, Laera L, Fantechi B, et al. Metabolomics to assess response to immune checkpoint inhibitors in patients with non-small-cell lung cancer. Cancers (Basel). 2020; 12(12): 3574.

[71]

More TH, Hiller K, Seifert M, et al. Metabolomics analysis reveals novel serum metabolite alterations in cancer cachexia. Front Oncol. 2024; 14: 1286896.

[72]

Yao C, Sun R, Yang Y, et al. Accumulation of branched-chain amino acids reprograms glucose metabolism in CD8(+) T cells with enhanced effector function and anti-tumor response. Cell Rep. 2023; 42(3): 112186.

[73]

Xiong H, Liu R, Xu K, et al. Branched-chain amino acid and cancer: metabolism, immune microenvironment and therapeutic targets. J Transl Med. 2025; 23(1): 636.

[74]

Wu Y, Pu X, Wang X, Xu M. Reprogramming of lipid metabolism in the tumor microenvironment: a strategy for tumor immunotherapy. Lipids Health Dis. 2024; 23(1): 35.

[75]

Carrie L, Virazels M, Dufau C, et al. New insights into the role of sphingolipid metabolism in melanoma. Cells. 2020; 9(9): 1967.

[76]

Lanekoff I, Sharma V, Marques C. Single-cell metabolomics: where are we and where are we going?. Curr Opin Biotechnol. 2022; 75: 102693.

[77]

Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer. 2024; 23(1): 202.

[78]

Yan J, Chen D, Ye Z, et al. Molecular mechanisms and therapeutic significance of tryptophan metabolism and signaling in cancer. Mol Cancer. 2024; 23(1): 241.

[79]

Van Dingenen L, Segers C, Wouters S, et al. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol. 2023; 13: 1298264.

[80]

Chen J, Liu JS, Liu JY, et al. Plasma metabolomics of immune-related adverse events for patients with lung cancer treated with PD-1/PD-L1 inhibitors. J Immunother Cancer. 2024; 12(7): e009399.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/