Dissecting cross-lineage tumourigenesis under p53 inactivation through single-cell multi-omics and spatial transcriptomics

Xinru Wang , Yuqing Mei , Xueyi Wang , Hanyu Wu , Renying Wang , Peijing Zhang , Guodong Zhang , Jiaqi Li , Mengmeng Jiang , Xing Fang , Lifeng Ma , Yuan Liao , Danmei Jia , Haofu Niu , E Weigao , Haide Chen , Lei Yang , Shuang Zhang , Tingyue Zhang , Yincong Zhou , Qi Zhang , He Huang , Hongwei Ouyang , Ming Chen , Tingbo Liang , Jinrong Peng , Jingjing Wang , Guoji Guo , Xiaoping Han

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (9) : e70461

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (9) : e70461 DOI: 10.1002/ctm2.70461
RESEARCH ARTICLE

Dissecting cross-lineage tumourigenesis under p53 inactivation through single-cell multi-omics and spatial transcriptomics

Author information +
History +
PDF

Abstract

Background: Tumour suppressor genes, exemplified by TP53 (encoding the human p53), function as critical guardians against tumourigenesis. Germline TP53-inactivating mutations underlie Li-Fraumeni syndrome, a hereditary cancer predisposition disorder characterised by early-onset pan-tissue malignancies. However, the context-dependent tumour-suppressive mechanisms of p53 remain incompletely elucidated. This study aims to investigate the disruption of cellular homeostasis and tumourigenic mechanisms following p53 inactivation across distinct cell lineages.

Methods: Trp53 (encoding mouse p53) knockout mouse model was employed to study molecular alterations under p53-deficient conditions. Multi-omics analyses – including single-cell transcriptomics, single-cell ATAC-seq, spatial transcriptomics, whole genome sequencing, and CUT&Tag – were integrated to construct a Trp53 functional cell landscape. Deep learning-based gene network models were employed to reconstruct p53 regulatory networks and simulate in silico perturbations caused by p53 loss.

Results: Our analyses revealed transitional dynamics in immune, stromal, and epithelial cells from normal physiology to p53-deficient states and subsequent tumourigenesis. These transitions implicated critical pathways such as cell cycle regulation, stress response, metabolic reprogramming, and immune modulation, displaying both lineage-conserved and lineage-specific features. Tumour-prone cell populations exhibiting elevated differentiation plasticity were identified across lineages within tumourigenic trajectories. Spatial transcriptomic profiling confirmed the emergence of thymic tumour-initiating T-cell clusters characterised by deterministic chromatin architectural disruptions under p53-loss pressure. Notably, we uncovered a recurrent upregulation signature of ribosomal protein genes as an early pivotal molecular event preceding malignant transformation in p53-deficient oncogenesis. Finally, we decoded the p53 downstream regulatory network and computationally evaluated the perturbation effects of genetic inactivation at single-cell resolution.

Conclusions: Our results elucidate the multiscale consequences of p53 inactivation while providing valuable resources for understanding tumour predisposition associated with p53-inactivating mutations and developing clinical interception strategies.

Keywords

cross-lineage tumourigenesis / knockout cell landscape analyses / p53 regulatory network / single-cell multi-omics

Cite this article

Download citation ▾
Xinru Wang, Yuqing Mei, Xueyi Wang, Hanyu Wu, Renying Wang, Peijing Zhang, Guodong Zhang, Jiaqi Li, Mengmeng Jiang, Xing Fang, Lifeng Ma, Yuan Liao, Danmei Jia, Haofu Niu, E Weigao, Haide Chen, Lei Yang, Shuang Zhang, Tingyue Zhang, Yincong Zhou, Qi Zhang, He Huang, Hongwei Ouyang, Ming Chen, Tingbo Liang, Jinrong Peng, Jingjing Wang, Guoji Guo, Xiaoping Han. Dissecting cross-lineage tumourigenesis under p53 inactivation through single-cell multi-omics and spatial transcriptomics. Clinical and Translational Medicine, 2025, 15(9): e70461 DOI:10.1002/ctm2.70461

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Linzer DIH, Levine AJ. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979; 17(1): 43-52.

[2]

Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020; 20(8): 471-480.

[3]

Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat. 2014; 35(6): 672-688.

[4]

Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010; 2(1): a001008.

[5]

Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990; 250(4985): 1233-1238.

[6]

Nagpal I, Yuan ZM. the basally expressed p53-mediated homeostatic function. Front Cell Dev Biol. 2021; 9: 775312.

[7]

Nguyen TAT, Grimm SA, Bushel PR, et al. Revealing a human p53 universe. Nucleic Acids Res. 2018; 46(16): 8153-8167.

[8]

Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017; 170(6): 1062-1078.

[9]

Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019; 20(4): 199-210.

[10]

Nistér M, Tang M, Zhang XQ, et al. p53 must be competent for transcriptional regulation to suppress tumor formation. Oncogene. 2005; 24(22): 3563-3573.

[11]

Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res. 2020; 48(16): 8848-8869.

[12]

Oda K, Arakawa H, Tanaka T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000; 102(6): 849-862.

[13]

Hayashi Y, Goyama S, Liu X, et al. Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia. Nat Commun. 2019; 10(1): 4869.

[14]

Miyazaki M, Otomo R, Matsushima-Hibiya Y, et al. The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas. Cell Death Discov. 2018; 4: 56.

[15]

Tanikawa C, Espinosa M, Suzuki A, et al. Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun. 2012; 3: 676.

[16]

Tanikawa C, Nakagawa H, Furukawa Y, Nakamura Y, Matsuda K. CLCA2 as a p53-inducible senescence mediator. Neoplasia. 2012; 14(2): 141-149.

[17]

Mori J, Tanikawa C, Funauchi Y, Lo PHY, Nakamura Y, Matsuda K. Cystatin C as a p53-inducible apoptotic mediator that regulates cathepsin L activity. Cancer Sci. 2016; 107(3): 298-306.

[18]

Martínez-Cruz AB, Santos M, García-Escudero R, et al. Spontaneous tumor formation in Trp53-deficient epidermis mediated by chromosomal instability and inflammation. Anticancer Res. 2009; 29(8): 3035-3042.

[19]

Li L, Ng DSW, Mah WC, et al. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ. 2015; 22(7): 1081-1093.

[20]

Jain AK, Barton MC. p53: emerging roles in stem cells, development and beyond. Development. 2018; 145(8): dev158360.

[21]

Charni M, Aloni-Grinstein R, Molchadsky A, Rotter V. p53 on the crossroad between regeneration and cancer. Cell Death Differ. 2017; 24(1): 8-14.

[22]

Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015; 520(7545): 57-62.

[23]

Bao F, LoVerso PR, Fisk JN, Zhurkin VB, Cui F. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context. Cell Cycle. 2017; 16(21): 2073-2085.

[24]

Haines BB, Ryu CJ, Chang S, et al. Block of T cell development in P53-deficient mice accelerates development of lymphomas with characteristic RAG-dependent cytogenetic alterations. Cancer Cell. 2006; 9(2): 109-120.

[25]

Dudgeon C, Chan C, Kang W, et al. The evolution of thymic lymphomas in p53 knockout mice. Genes Dev. 2014; 28(23): 2613-2620.

[26]

Tanikawa C, Zhang YZ, Yamamoto R, et al. The transcriptional landscape of p53 signalling pathway. EBioMedicine. 2017; 20: 109-119.

[27]

Suo C, Dann E, Goh I, et al. Mapping the developing human immune system across organs. Science. 2022; 376(6597): eabo0510.

[28]

Han X, Wang R, Zhou Y, et al. Mapping the mouse cell atlas by microwell-seq. Cell. 2018; 172(5): 1091-1107.e17.

[29]

Li J, Wang J, Zhang P, et al. Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types. Nat Genet. 2022; 54(11): 1711-1720.

[30]

Han X, Zhou Z, Fei L, et al. Construction of a human cell landscape at single-cell level. Nature. 2020; 581(7808): 303-309.

[31]

Tabula Sapiens Consortium*, Jones RC, Karkanias J, et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science. 2022; 376(6594): eabl4896.

[32]

Barbeira AN, Bonazzola R, Gamazon ER, et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 2021; 22(1): 49.

[33]

Haniffa M, Taylor D, Linnarsson S, et al. A roadmap for the human developmental cell atlas. Nature. 2021; 597(7875): 196-205.

[34]

Schaum N, Karkanias J, Neff NF, et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018; 562(7727): 367-372.

[35]

Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020; 583(7817): 590-595.

[36]

Zhang K, Hocker JD, Miller M, et al. A single-cell atlas of chromatin accessibility in the human genome. Cell. 2021; 184(24): 5985-6001.e19.

[37]

Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992; 356(6366): 215-221.

[38]

Joerger AC, Stiewe T, Soussi T. TP53: the unluckiest of genes? Cell Death Differ. 2025; 32(2): 219-224. Published online October 23, 2024:1-6.

[39]

Venkatachalam S, Tyner S, Donehower LA. The p53-deficient mouse as a cancer model. In: Teicher BA, editor. Tumor Models in Cancer Research. Humana Press; 2002: 247-261.

[40]

Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161(5): 1202-1214.

[41]

Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29(1): 15-21.

[42]

McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019; 8(4): 329-337.e4.

[43]

Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021; 184(13): 3573-3587.e29.

[44]

Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1): 15.

[45]

Dann E, Henderson NC, Teichmann SA, Morgan MD, Marioni JC. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat Biotechnol. 2022; 40(2): 245-253.

[46]

Tang F, Li J, Qi L, et al. A pan-cancer single-cell panorama of human natural killer cells. Cell. 2023; 186(19): 4235-4251.e20.

[47]

Kim J, Woo AJ, Chu J, et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell. 2010; 143(2): 313-324.

[48]

Gavish A, Tyler M, Greenwald AC, et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature. 2023; 618(7965): 598-606.

[49]

Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017; 14(11): 1083-1086.

[50]

Teschendorff AE, Maity AK, Hu X, Weiyan C, Lechner M. Ultra-fast scalable estimation of single-cell differentiation potency from scRNA-Seq data. Bioinformatics. 2020; 37(11): 1528-1534.

[51]

Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013; 14: 7.

[52]

Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017; 14(10): 979-982.

[53]

Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4): 381-386.

[54]

Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017; 14(3): 309-315.

[55]

Cao J, Spielmann M, Qiu X, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019; 566(7745): 496-502.

[56]

Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021; 12(1): 1088.

[57]

Wu Y, Yang S, Ma J, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022; 12(1): 134-153.

[58]

Granja JM, Corces MR, Pierce SE, et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021; 53(3): 403-411.

[59]

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14): 1754-1760.

[60]

Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9(9): R137.

[61]

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4): 357-359.

[62]

Mp M, D T, S H. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics & chromatin. 2019; 12(1): 42.

[63]

Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015; 31(14): 2382-2383.

[64]

Lange S, Engleitner T, Mueller S, et al. Analysis pipelines for cancer genome sequencing in mice. Nat Protoc. 2020; 15(2): 266-315.

[65]

Cui Zhou D, Jayasinghe RG, Chen S, et al. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat Genet. 2022; 54(9): 1390-1405.

[66]

Kamimoto K, Stringa B, Hoffmann CM, Jindal K, Solnica-Krezel L, Morris SA. Dissecting cell identity via network inference and in silico gene perturbation. Nature. 2023; 614(7949): 742-751.

[67]

Theodoris CV, Xiao L, Chopra A, et al. Transfer learning enables predictions in network biology. Nature. 2023; 618(7965): 616-624.

[68]

Donehower LA, Lozano G. 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer. 2009; 9(11): 831-841.

[69]

Kim U, Kim CY, Oh H, et al. Phenotyping analysis of p53 knockout mice produced by gene editing and comparison with conventional p53 knockout mice. Genes Genomics. 2019; 41(6): 701-712.

[70]

Donehower LA. The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol. 1996; 7(5): 269-278.

[71]

Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994; 4(1): 1-7.

[72]

Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006; 20(15): 2096-2109.

[73]

Dudley DD, Wang HC, Sun XH. Hes1 potentiates T cell lymphomagenesis by up-regulating a subset of notch target genes. PLoS One. 2009; 4(8): e6678.

[74]

Park JE, Botting RA, Conde CD, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020; 367(6480): eaay3224.

[75]

Amatore F, Ortonne N, Lopez M, et al. ICOS is widely expressed in cutaneous T-cell lymphoma, and its targeting promotes potent killing of malignant cells. Blood Adv. 2020; 4(20): 5203-5214.

[76]

Heddar A, Ogur C, Da Costa S, et al. Genetic landscape of a large cohort of primary ovarian insufficiency: new genes and pathways and implications for personalized medicine. EBioMedicine. 2022; 84: 104246.

[77]

Goyal NA, Coulis G, Duarte J, et al. Immunophenotyping of inclusion body myositis blood T and NK cells. Neurology. 2022; 98(13): e1374-e1383.

[78]

Han W, Shi D, Yang Q, et al. Alteration of chromosome structure impacts gene expressions implicated in pancreatic ductal adenocarcinoma cells. BMC Genomics. 2024; 25(1): 206.

[79]

Yang R, Shao T, Long M, et al. Long noncoding RNA PVT1 promotes tumor growth and predicts poor prognosis in patients with diffuse large B-cell lymphoma. Cancer Commun (Lond). 2020; 40(10): 551-555.

[80]

Clurman BE, Groudine M. The CDKN2A tumor-suppressor locus – a tale of two proteins. N Engl J Med. 1998; 338(13): 910-912.

[81]

Miao ZF, Sun JX, Adkins-Threats M, et al. DDIT4 licenses only healthy cells to proliferate during injury-induced metaplasia. Gastroenterology. 2021; 160(1): 260-271.e10.

[82]

Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene – the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022; 19(1): 23-36.

[83]

Zahra K, Dey T, Ashish null, Mishra SP, Pandey U. Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol. 2020; 10: 159.

[84]

Torrejon DY, Galvez M, Abril-Rodriguez G, et al. Antitumor immune responses in B2M-deficient cancers. Cancer Immunol Res. 2023; 11(12): 1642-1655.

[85]

Van Laethem F, Tikhonova AN, Pobezinsky LA, et al. Lck availability during thymic selection determines the recognition specificity of the T cell repertoire. Cell. 2013; 154(6): 1326-1341.

[86]

Canté-Barrett K, Winslow MM, Crabtree GR. Selective role of NFATc3 in positive selection of thymocytes. J Immunol. 2007; 179(1): 103-110.

[87]

Kakugawa K, Kojo S, Tanaka H, et al. Essential roles of SATB1 in specifying T lymphocyte subsets. Cell Rep. 2017; 19(6): 1176-1188.

[88]

Woolaver RA, Wang X, Krinsky AL, et al. Differences in TCR repertoire and T cell activation underlie the divergent outcomes of antitumor immune responses in tumor-eradicating versus tumor-progressing hosts. J Immunother Cancer. 2021; 9(1): e001615.

[89]

Giordano M, Roncagalli R, Bourdely P, et al. The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proc Natl Acad Sci U S A. 2014; 111(30): 11115-11120.

[90]

Huang Y, Wu L, Sun Y, et al. CCL5 might be a prognostic biomarker and associated with immuno-therapeutic efficacy in cancers: a pan-cancer analysis. Heliyon. 2023; 9(7): e18215.

[91]

Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018; 8(9): 1069-1086.

[92]

Morgan D, Tergaonkar V. Unraveling B cell trajectories at single cell resolution. Trends Immunol. 2022; 43(3): 210-229.

[93]

Pieters T, Almeida A, T'Sas S, et al. Myb drives B-cell neoplasms and myeloid malignancies in vivo. Blood Adv. 2022; 6(10): 2987-2991.

[94]

Valentin Hansen S, Høy Hansen M, Cédile O, et al. Detailed characterization of the transcriptome of single B cells in mantle cell lymphoma suggesting a potential use for SOX4. Sci Rep. 2021; 11(1): 19092.

[95]

Xu C, Wang Z, Zhang L, et al. Periostin promotes the proliferation and metastasis of osteosarcoma by increasing cell survival and activates the PI3K/Akt pathway. Cancer Cell Int. 2022; 22: 34.

[96]

Zhang Z, Zhu H, Zhao C, et al. DDIT4 promotes malignancy of head and neck squamous cell carcinoma. Mol Carcinog. 2023; 62(3): 332-347.

[97]

Chen S, Li Y, Zhu Y, et al. SERPINE1 overexpression promotes malignant progression and poor prognosis of gastric cancer. J Oncol. 2022; 2022: 2647825.

[98]

Alba-Castellón L, Batlle R, Francí C, et al. Snail1 expression is required for sarcomagenesis. Neoplasia. 2014; 16(5): 413-421.

[99]

Kriegsmann K, Flechtenmacher C, Heil J, et al. Immunohistological expression of SOX-10 in triple-negative breast cancer: a descriptive analysis of 113 samples. Int J Mol Sci. 2020; 21(17): 6407.

[100]

Bierie B, Pierce SE, Kroeger C, et al. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci U S A. 2017; 114(12): E2337-E2346.

[101]

Hanley CJ, Henriet E, Sirka OK, Thomas GJ, Ewald AJ. Tumor-resident stromal cells promote breast cancer invasion through regulation of the basal phenotype. Mol Cancer Res. 2020; 18(11): 1615-1622.

[102]

Khaled WT, Choon Lee S, Stingl J, et al. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun. 2015; 6: 5987.

[103]

Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011; 35(6): 871-882.

[104]

Ilson DH. Emerging evidence for VEGF and immune checkpoint inhibition in oesophagogastric cancer. Lancet Gastroenterol Hepatol. 2022; 7(3): 200-201.

[105]

Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol. 2020; 65: 176-188.

[106]

Cedeno-Laurent F, Dimitroff CJ. Galectin-1 research in T cell immunity: past, present and future. Clin Immunol. 2012; 142(2): 107-116.

[107]

Li CMC, Shapiro H, Tsiobikas C, et al. Aging-associated alterations in mammary epithelia and stroma revealed by single-cell RNA sequencing. Cell Rep. 2020; 33(13): 108566.

[108]

Yannoutsos N, Wilson P, Yu W, et al. The role of recombination activating gene (RAG) reinduction in thymocyte development in vivo. J Exp Med. 2001; 194(4): 471-480.

[109]

Gu Y, Seidl KJ, Rathbun GA, et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity. 1997; 7(5): 653-665.

[110]

Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017; 129(9): 1124-1133.

[111]

Baslan T, Morris JP, Zhao Z, et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature. 2022; 608(7924): 795-802.

[112]

Liu D, Fu Y, Wang X, et al. Characterization of human pluripotent stem cell differentiation by single-cell dual-omics analyses. Stem Cell Reports. 2023; 18(12): 2464-2481.

[113]

Bravo González-Blas C, De Winter S, Hulselmans G, et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat Methods. 2023; 20(9): 1355-1367.

[114]

Date Y, Ito K. Oncogenic RUNX3: a link between p53 deficiency and MYC dysregulation. Mol Cells. 2020; 43(2): 176-181.

[115]

Yan Y, Wang S, Lin C. BCL11B upregulates the expression of NF-κB in T cells stimulated with SEA. Published online 2021.

[116]

Si M, Lang J. The roles of metallothioneins in carcinogenesis. Journal of Hematology & Oncology. 2018; 11(1): 107.

[117]

Jay TR, von Saucken VE, Landreth GE. TREM2 in neurodegenerative diseases. Mol Neurodegener. 2017; 12(1): 56.

[118]

Bonham LW, Sirkis DW, Yokoyama JS. The transcriptional landscape of microglial genes in aging and neurodegenerative disease. Front Immunol. 2019; 10.

[119]

Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull. 2023; 205: 110820.

[120]

Li J, Yang Y, Zhao C, et al. Microglial C/EBPβ-Fcgr1 regulatory axis blocking inhibits microglial pyroptosis and improves neurological recovery. Journal of Neuroinflammation. 2025; 22(1): 29.

[121]

Liao MJ, Zhang XX, Hill R, et al. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Molecular and Cellular Biology. 1998; 18(6): 3495-3501.

[122]

Zhang P, Wang X, Cen X, et al. A deep learning framework for in silico screening of anticancer drugs at the single-cell level. Natl Sci Rev. 2025; 12(2).

[123]

Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019; 10(1): 1930.

[124]

Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017; 36(28): 3943-3956.

[125]

Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol. 2017; 13(2): e1005404.

[126]

He H, Sun Y. Ribosomal protein S27L is a direct p53 target that regulates apoptosis. Oncogene. 2007; 26(19): 2707-2716.

[127]

Liska O, Bohár B, Hidas A, et al. TFLink: an integrated gateway to access transcription factor-target gene interactions for multiple species. Database (Oxford). 2022; 2022: baac083.

[128]

Weeden CE, Hill W, Lim EL, Grönroos E, Swanton C. Impact of risk factors on early cancer evolution. Cell. 2023; 186(8): 1541-1563.

[129]

Cui Y, Guo G. immunomodulatory function of the tumor suppressor p53 in host immune response and the tumor microenvironment. Int J Mol Sci. 2016; 17(11): 1942.

[130]

Shi D, Jiang P. A different facet of p53 function: regulation of immunity and inflammation during tumor development. Front Cell Dev Biol. 2021; 9: 762651.

[131]

Watanabe M, Moon KD, Vacchio MS, Hathcock KS, Hodes RJ. Downmodulation of tumor suppressor p53 by T cell receptor signaling is critical for antigen-specific CD4(+) T cell responses. Immunity. 2014; 40(5): 681-691.

[132]

Fang L, Liu K, Liu C, et al. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol. 2022; 13: 979116.

[133]

Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer. 2024; 24(3): 192-215.

[134]

Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY). 2019; 11(8): 2512.

[135]

Comas M, Toshkov I, Kuropatwinski KK, et al. New nanoformulation of rapamycin Rapatar extends lifespan in homozygous p53-/- mice by delaying carcinogenesis. Aging (Albany NY). 2012; 4(10): 715-722.

[136]

Komarova EA, Antoch MP, Novototskaya LR, et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice. Aging (Albany NY). 2012; 4(10): 709-714.

[137]

Jiao L, Liu Y, Yu XY, et al. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther. 2023; 8(1): 15.

[138]

Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol. 2015; 7(2): 92-104.

[139]

Challagundla KB, Sun XX, Zhang X, et al. Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Mol Cell Biol. 2011; 31(19): 4007-4021.

[140]

Zhou X, Hao Q, Liao JM, Liao P, Lu H. Ribosomal protein S14 negatively regulates c-Myc activity. J Biol Chem. 2013; 288(30): 21793-21801.

[141]

Liao JM, Zhou X, Gatignol A, Lu H. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex. Oncogene. 2014; 33(41): 4916-4923.

[142]

Guimaraes JC, Zavolan M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol. 2016; 17: 236.

[143]

Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol. 2012; 13(6): 355-369.

[144]

Zhang Y, Lu H. Signaling to p53: Ribosomal Proteins Find Their Way. Cancer Cell. 2009; 16(5): 369-377.

[145]

Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res. 2020; 48(3): 1013-1028.

[146]

Budde A, Grummt I. p53 represses ribosomal gene transcription. Oncogene. 1999; 18(4): 1119-1124.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/