Molecular architecture of language-related cortical areas revealed by integrative proteomic and connectome analyses

Jinsong Wu , Zixian Wang , Fengjiao Li , Shuolei Bu , Lianglong Sun , Chen Zheng , Zhixin Bai , Luhao Yang , Fangyuan Gong , Jiali Chen , Yien Huang , Wanjing Li , Guoquan Yan , Weiwei Xian , Jiaxuan Yang , Shuai Wu , Kemin Zhu , Wenke Fan , Qiong Liu , Guomin Zhou , Gong-Hong Wei , Wensheng Li , Jing Yan , Jingliang Cheng , Russell G. Snell , Maurice A. Curtis , Tianye Jia , Binke Yuan , Yong He , Weijiang Zhang , Linya You

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (9) : e70449

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (9) : e70449 DOI: 10.1002/ctm2.70449
RESEARCH ARTICLE

Molecular architecture of language-related cortical areas revealed by integrative proteomic and connectome analyses

Author information +
History +
PDF

Abstract

Background: Protein expression asymmetry between brain hemispheres is hypothesized to influence functional connectivity, yet its role in language-related networks remains poorly understood. Additionally, how such molecular differences relate to brain reorganization in glioma requires further exploration.

Methods: We performed label-free tandem mass spectrometry on 13 left-hemispheric language-related Brodmann areas (BAs) and their right-hemispheric counterparts from 10 donor brains, identifying protein signatures across 6 language-related functional modules. We then compared these proteomic profiles with resting-state structural and functional connectivity data from 26 BAs across 90 subjects from the Human Connectome Project (HCP). Finally, we examined functional compensation in 13 glioma patients with tumors in Wernicke's area, correlating gray matter volume in contralateral homologs with linguistic performance.

Results: Protein expression heterogeneity was greater within hemispheres than between homologous contralateral BAs. Hierarchical clustering revealed interactions between core language areas (Broca's, Wernicke's, Geschwind's) and auditory/motor regions. Functional connectivity strength correlated with protein expression similarity, particularly in symmetric BA4 (primary motor cortex). Excitatory/inhibitory (E/I) neuronal markers (GRIA1/GRIA4) showed a left-positive, right-negative correlation with connectivity, suggesting hemispheric differences in synaptic regulation. Glioma patients exhibited right-hemispheric compensation, with gray matter volume in Wernicke's homolog correlating with linguistic function.

Conclusion: Our findings support the hypothesis of a homophilic mixing effect between protein expression similarity and connectome architecture, and help explain brain rearrangement in glioma patients.

Keywords

bilateral / brain reorganisation / Brodmann area / connectome / human postmortem brain / language / proteomics

Cite this article

Download citation ▾
Jinsong Wu, Zixian Wang, Fengjiao Li, Shuolei Bu, Lianglong Sun, Chen Zheng, Zhixin Bai, Luhao Yang, Fangyuan Gong, Jiali Chen, Yien Huang, Wanjing Li, Guoquan Yan, Weiwei Xian, Jiaxuan Yang, Shuai Wu, Kemin Zhu, Wenke Fan, Qiong Liu, Guomin Zhou, Gong-Hong Wei, Wensheng Li, Jing Yan, Jingliang Cheng, Russell G. Snell, Maurice A. Curtis, Tianye Jia, Binke Yuan, Yong He, Weijiang Zhang, Linya You. Molecular architecture of language-related cortical areas revealed by integrative proteomic and connectome analyses. Clinical and Translational Medicine, 2025, 15(9): e70449 DOI:10.1002/ctm2.70449

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci. 2023; 24(12): 747-760.

[2]

Brodmann K. In: K. Brodmann, J.A. Barth, eds. Vergleichende Lokalisationslehre Der Grosshirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues von. Leipzig: Barth; 1909.

[3]

Kang HJ, Kawasawa YI, Cheng F, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011; 478(7370): 483-489.

[4]

Akbarian S, Liu C, Knowles JA, et al. The PsychENCODE project. Nat Neurosci. 2015; 18(12): 1707-1712.

[5]

Bakken TE, Jorstad NL, Hu Q, et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature. 2021; 598(7879): 111-119.

[6]

Siletti K, Hodge R, Mossi Albiach A, et al. Transcriptomic diversity of cell types across the adult human brain. Science. 2023; 382(6667): eadd7046.

[7]

Chen X, Huang Y, Huang L, et al. A brain cell atlas integrating single-cell transcriptomes across human brain regions. Nat Med. 2024; 30(9): 2679-2691.

[8]

Schwanhäusser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature. 2011; 473(7347): 337-342.

[9]

Johnson ECB, Carter EK, Dammer EB, et al. Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat Neurosci. 2022; 25(2): 213-225.

[10]

Kitchen RR, Rozowsky JS, Gerstein MB, Nairn AC. Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci. 2014; 17(11): 1491-1499.

[11]

Lam KHB, Faust K, Yin R, Fiala C, Diamandis P. The Brain Protein Atlas: a conglomerate of proteomics datasets of human neural tissue. Proteomics. 2022; 22(23-24): e2200127.

[12]

Malik-Moraleda S, Ayyash D, Gallée J, et al. An investigation across 45 languages and 12 language families reveals a universal language network. Nat Neurosci. 2022; 25(8): 1014-1019.

[13]

Lindell AK. In your right mind: right hemisphere contributions to language processing and production. Neuropsychol Rev. 2006; 16(3): 131-148.

[14]

Wu C-Y, Zaccarella E, Friederici AD. Universal neural basis of structure building evidenced by network modulations emerging from Broca's area: the case of Chinese. Hum Brain Mapp. 2019; 40(6): 1705-1717.

[15]

Jung-Beeman M. Bilateral brain processes for comprehending natural language. Trends Cogn Sci. 2005; 9(11): 512-518.

[16]

Hickok G, Poeppel D. Towards a functional neuroanatomy of speech perception. Trends Cogn Sci. 2000; 4(4): 131-138.

[17]

Flinker A, Doyle WK, Mehta AD, Devinsky O, Poeppel D. Spectrotemporal modulation provides a unifying framework for auditory cortical asymmetries. Nat Hum Behav. 2019; 3(4): 393-405.

[18]

Ardila A, Bernal B, Rosselli M. Language and visual perception associations: meta-analytic connectivity modeling of Brodmann area 37. Behav Neurol. 2015; 2015: 565871.

[19]

Zhang S, Li CSR. Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state functional magnetic resonance imaging signals. Brain Connect. 2014; 4(1): 53-69.

[20]

Schulz GM, Varga M, Jeffires K, Ludlow CL, Braun AR. Functional neuroanatomy of human vocalization: an H215O PET study. Cereb Cortex. 2005; 15(12): 1835-1847.

[21]

Guenther FH, Ghosh SS, Tourville JA. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 2006; 96(3): 280-301.

[22]

Brown S, Laird AR, Pfordresher PQ, Thelen SM, Turkeltaub P, Liotti M. The somatotopy of speech: phonation and articulation in the human motor cortex. Brain Cogn. 2009; 70(1): 31-41.

[23]

Siok WT, Perfetti CA, Jin Z, Tan LH. Biological abnormality of impaired reading is constrained by culture. Nature. 2004; 431(7004): 71-76.

[24]

Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007; 8(5): 393-402.

[25]

Giraud A-L, Poeppel D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci. 2012; 15(4): 511-517.

[26]

Nieberlein L, Rampp S, Gussew A, Prell J, Hartwigsen G. Reorganization and plasticity of the language network in patients with cerebral gliomas. NeuroImage Clin. 2023; 37: 103326.

[27]

Arnatkeviciute A, Fulcher BD, Bellgrove MA, Fornito A. Where the genome meets the connectome: understanding how genes shape human brain connectivity. Neuroimage. 2021; 244: 118570.

[28]

Barabási DL, Barabási A-L. A genetic model of the connectome. Neuron. 2020; 105(3): 435-445.

[29]

Richiardi J, Altmann A, Milazzo A-C, et al. Brain networks. Correlated gene expression supports synchronous activity in brain networks. Science. 2015; 348(6240): 1241-1244.

[30]

Sha Z, Schijven D, Fisher SE, Francks C. Genetic architecture of the white matter connectome of the human brain. Sci Adv. 2023; 9(7): eadd2870.

[31]

Xia M, Liu J, Mechelli A, et al. Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes. Mol Psychiatry. 2022; 27(3): 1384-1393.

[32]

Van Essen DC, Smith J, Glasser MF, et al. The brain analysis library of spatial maps and atlases (BALSA) database. Neuroimage. 2017; 144(pt B): 270-274.

[33]

Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The WU-Minn human connectome project: an overview. Neuroimage. 2013; 80: 62-79.

[34]

Salmi E, Aalto S, Hirvonen J, et al. Measurement of GABAA receptor binding in vivo with [11C]flumazenil: a test‒retest study in healthy subjects. Neuroimage. 2008; 41(2): 260-269.

[35]

DeLorenzo C, Gallezot J-D, Gardus J, et al. In vivo variation in same-day estimates of metabotropic glutamate receptor subtype 5 binding using [(11)C]ABP688 and [(18)F]FPEB. J Cereb Blood Flow Metab. 2017; 37(8): 2716-2727.

[36]

Terry GE, Liow J-S, Zoghbi SS, et al. Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand. Neuroimage. 2009; 48(2): 362-370.

[37]

Hawrylycz M, Miller JA, Menon V, et al. Canonical genetic signatures of the adult human brain. Nat Neurosci. 2015; 18(12): 1832-1844.

[38]

Alexander-Bloch AF, Shou H, Liu S, et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage. 2018; 178: 540-551.

[39]

Markello RD, Misic B. Comparing spatial null models for brain maps. Neuroimage. 2021; 236: 118052.

[40]

Russell TM, Richardson DR. The good Samaritan glutathione-S-transferase P1: an evolving relationship in nitric oxide metabolism mediated by the direct interactions between multiple effector molecules. Redox Biol. 2023; 59: 102568.

[41]

Jiang L, Wang M, Lin S, et al. A quantitative proteome map of the human body. Cell. 2020; 183(1): 269-283.

[42]

Carlyle BC, Kitchen RR, Kanyo JE, et al. A multiregional proteomic survey of the postnatal human brain. Nat Neurosci. 2017; 20(12): 1787-1795.

[43]

Guo Z, Shao C, Zhang Y, et al. A global multiregional proteomic map of the human cerebral cortex. Genom Proteom Bioinform. 2022; 20(4): 614-632.

[44]

Tran HTN, Ang KS, Chevrier M, et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020; 21(1): 1-32.

[45]

Courchet J, Lewis TL, Lee S, et al. Terminal axon branching is regulated by the LKB1‒NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell. 2013; 153(7): 1510-1525.

[46]

Wang B, Giannakopoulou O, Austin-Zimmerman I, et al. Adolescent verbal memory as a psychosis endophenotype: a genome-wide association study in an ancestrally diverse sample. Genes (Basel). 2022; 13(1): 106.

[47]

Vuong JK, Lin C-H, Zhang M, Chen L, Black DL, Zheng S. PTBP1 and PTBP2 serve both specific and redundant functions in neuronal pre-mRNA splicing. Cell Rep. 2016; 17(10): 2766-2775.

[48]

Kovaleva V, Yu L-Y, Ivanova L, et al. MANF regulates neuronal survival and UPR through its ER-located receptor IRE1α. Cell Rep. 2023; 42(2): 112066.

[49]

Salpietro V, Malintan NT, Llano-Rivas I, et al. Mutations in the neuronal vesicular SNARE VAMP2 affect synaptic membrane fusion and impair human neurodevelopment. Am J Hum Genet. 2019; 104(4): 721-730.

[50]

Lin P-Y, Chen LY, Zhou P, Lee S-J, Trotter JH, Südhof TC. Neurexin-2 restricts synapse numbers and restrains the presynaptic release probability by an alternative splicing-dependent mechanism. Proc Natl Acad Sci U S A. 2023; 120(13): e2300363120.

[51]

Marsac R, Pinson B, Saint-Marc C, et al. Purine homeostasis is necessary for developmental timing, germline maintenance and muscle integrity in caenorhabditis elegans. Genetics. 2019; 211(4): 1297-1313.

[52]

Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein‒protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47(D1): D607-D613.

[53]

Disciglio V, Lo Rizzo C, Mencarelli MA, et al. Interstitial 22q13 deletions not involving SHANK3 gene: a new contiguous gene syndrome. Am J Med Genet A. 2014; 164A(7): 1666-1676.

[54]

Peretz I, Zatorre RJ. Brain organization for music processing. Annu Rev Psychol. 2005; 56(1): 89-114.

[55]

Premi E, Pilotto A, Alberici A, et al. FOXP2, APOE, and PRNP: new modulators in primary progressive aphasia. J Alzheimers Dis. 2012; 28(4): 941-950.

[56]

Basel-Vanagaite L, Straussberg R, Friez MJ, et al. Expanding the phenotypic spectrum of L1CAM-associated disease. Clin Genet. 2006; 69(5): 414-419.

[57]

van Diepen MML, Gijsbers ACJ, Bosch CAJ, Oudesluys-Murphy AM, Ruivenkamp CAL, Bijlsma EK. A 797 kb de novo deletion of 18q21.31 in a patient with speech delay, mental retardation, sleeping problems, facial dysmorphism, and feet anomalies. Eur J Med Genet. 2011; 54(1): 86-88.

[58]

Wood MA, Kaplan MP, Brensinger CM, Guo W, Abel T. Ubiquitin C-terminal hydrolase L3 (Uchl3) is involved in working memory. Hippocampus. 2005; 15(5): 610-621.

[59]

Woo J, Kim JE, Im JJ, et al. Astrocytic water channel aquaporin-4 modulates brain plasticity in both mice and humans: a potential gliogenetic mechanism underlying language-associated learning. Mol Psychiatry. 2018; 23(4): 1021-1030.

[60]

Mohamoud HS, Ahmed S, Jelani M, et al. A missense mutation in TRAPPC6A leads to build-up of the protein, in patients with a neurodevelopmental syndrome and dysmorphic features. Sci Rep. 2018; 8(1): 2053.

[61]

Manoochehri J, Kamal N, Khamirani HJ, et al. A combination of two novels homozygous FCSK variants cause disorder of glycosylation with defective fucosylation: new patient and literature review. Eur J Med Genet. 2022; 65(8): 104535.

[62]

Suzuki H, Li S, Tokutomi T, et al. De novo non-synonymous DPYSL2 (CRMP2) variants in two patients with intellectual disabilities and documentation of functional relevance through zebrafish rescue and cellular transfection experiments. Hum Mol Genet. 2022; 31(24): 4173-4182.

[63]

He H, Guzman RE, Cao D, et al. The molecular and phenotypic spectrum of CLCN4-related epilepsy. Epilepsia. 2021; 62(6): 1401-1415.

[64]

Schneeberger PE, Kortüm F, Korenke GC, et al. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain. 2020; 143(8): 2437-2453.

[65]

Altuame FD, Foskett G, Atwal PS, et al. The natural history of infantile neuroaxonal dystrophy. Orphanet J Rare Dis. 2020; 15(1): 109.

[66]

Belin P, Fecteau S, Bédard C. Thinking the voice: neural correlates of voice perception. Trends Cogn Sci. 2004; 8(3): 129-135.

[67]

Sinha V, Ukkola-Vuoti L, Ortega-Alonso A, et al. Variants in regulatory elements of PDE4D associate with major mental illness in the Finnish population. Mol Psychiatry. 2021; 26(3): 816-824.

[68]

Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friederici AD. Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex. 2015; 63: 79-89.

[69]

Ismail V, Zachariassen LG, Godwin A, et al. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: an emerging neurodevelopmental syndrome. Am J Hum Genet. 2022; 109(7): 1217-1241.

[70]

Biswas D, Shenoy SV, Chetanya C, et al. Deciphering the interregional and interhemisphere proteome of the human brain in the context of the human proteome project. J Proteome Res. 2021; 20(12): 5280-5293.

[71]

Wang X-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci. 2020; 21(3): 169-178.

[72]

Berwick RC, Friederici AD, Chomsky N, Bolhuis JJ. Evolution, brain, and the nature of language. Trends Cogn Sci. 2013; 17(2): 89-98.

[73]

Friederici AD, Chomsky N, Berwick RC, Moro A, Bolhuis JJ. Language, mind and brain. Nat Hum Behav. 2017; 1(10): 713-722.

[74]

Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage. 2012; 62(2): 816-847.

[75]

Hagoort P, Indefrey P. The neurobiology of language beyond single words. Annu Rev Neurosci. 2014; 37: 347-362.

[76]

Finkl T, Hahne A, Friederici AD, Gerber J, Mürbe D, Anwander A. Language without speech: segregating distinct circuits in the human brain. Cereb Cortex. 2019; 30(2): 812-823.

[77]

Wei J, Dai S, Yan Y, et al. Spatiotemporal proteomic atlas of multiple brain regions across early fetal to neonatal stages in cynomolgus monkey. Nat Commun. 2023; 14(1): 3917.

[78]

Bazinet V, Hansen JY, Vos de Wael R, Bernhardt BC, van den Heuvel MP, Misic B. Assortative mixing in micro-architecturally annotated brain connectomes. Nat Commun. 2023; 14(1): 2850.

[79]

Harris ML, Julyan P, Kulkarni B, et al. Mapping metabolic brain activation during human volitional swallowing: a positron emission tomography study using [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab. 2005; 25(4): 520-526.

[80]

Li P, Ensink E, Lang S, et al. Hemispheric asymmetry in the human brain and in Parkinson's disease is linked to divergent epigenetic patterns in neurons. Genome Biol. 2020; 21(1): 61.

[81]

Zhao X, Liang W, Wang W, et al. Changes in and asymmetry of the proteome in the human fetal frontal lobe during early development. Commun Biol. 2022; 5(1): 1031.

[82]

French L, Pavlidis P. Relationships between gene expression and brain wiring in the adult rodent brain. PLoS Comput Biol. 2011; 7(1): e1001049.

[83]

Hansen JY, Shafiei G, Markello RD, et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat Neurosci. 2022; 25(11): 1569-1581.

[84]

Almairac F, Duffau H, Herbet G. Contralesional macrostructural plasticity of the insular cortex in patients with glioma: a VBM study. Neurology. 2018; 91(20): e1902-e1908.

[85]

Duffau H. Brain plasticity and tumors. Adv Tech Stand Neurosurg. 2008; 33: 3-33.

[86]

Cargnelutti E, Ius T, Skrap M, Tomasino B. What do we know about pre- and postoperative plasticity in patients with glioma? A review of neuroimaging and intraoperative mapping studies. NeuroImage Clin. 2020; 28: 102435.

[87]

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012; 489(7416): 391-399.

[88]

Toga AW, Thompson PM. Mapping brain asymmetry. Nat Rev Neurosci. 2003; 4(1): 37-48.

[89]

Zilles K, Amunts K. Centenary of Brodmann's map—conception and fate. Nat Rev Neurosci. 2010; 11(2): 139-145.

[90]

Stark DE, Margulies DS, Shehzad ZE, et al. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci. 2008; 28(51): 13754-13764.

[91]

Shen K, Mišić B, Cipollini BN, et al. Stable long-range interhemispheric coordination is supported by direct anatomical projections. Proc Natl Acad Sci U S A. 2015; 112(20): 6473-6478.

[92]

Zuo X-N, Kelly C, Di Martino A, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci. 2010; 30(45): 15034-15043.

[93]

Glasser MF, Coalson TS, Robinson EC, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016; 536(7615): 171-178.

[94]

Namburete AIL, Papież BW, Fernandes M, et al. Normative spatiotemporal fetal brain maturation with satisfactory development at 2 years. Nature. 2023; 623(7985): 106-114.

[95]

Thomas C, Ye FQ, Irfanoglu MO, et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A. 2014; 111(46): 16574-16579.

[96]

Maier-Hein KH, Neher PF, Houde J-C, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2017; 8(1): 1349.

[97]

Tahedl M, Tournier J-D, Smith RE. Structural connectome construction using constrained spherical deconvolution in multi-shell diffusion-weighted magnetic resonance imaging. Nat Protoc. 2025.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/