Intestinal Fut2 deficiency exacerbated alcohol-related liver disease by disrupting nicotinamide metabolism

Liuying Chen , Zhongwei Yin , Luorui Shang , Hang Yuan , Wenkang Gao , Shuhan Wang , Shuyan Wang , Xiaohua Hou , Shenglan Yang , Huikuan Chu

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (8) : e70447

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (8) : e70447 DOI: 10.1002/ctm2.70447
RESEARCH ARTICLE

Intestinal Fut2 deficiency exacerbated alcohol-related liver disease by disrupting nicotinamide metabolism

Author information +
History +
PDF

Abstract

Background: Fucosyltransferase 2 (FUT2)-dependent fucosylation of intestinal epithelial cells is vital for preserving gut barrier integrity and microbial balance. Nevertheless, its precise involvement in alcohol-associated liver disease has yet to be fully elucidated.

Methods: We generated mice with intestinal epithelial cell-specific Fut2 knockout (Fut2△IEC) and established a chronic-binge alcohol model. 16S rRNA sequencing and metabolomics analysis were used to reveal differences in the composition and function of faecal bacteria.

Results: The loss of intestinal epithelial Fut2 exacerbates alcohol-related hepatic oxidative stress damage, and this effect is dependent on gut bacteria. A marked decrease in the abundance of bacteria carrying nicotinamidase (PncA) in the intestines of Fut2△IEC mice was observed, leading to disrupted nicotinamide metabolism and decreased nicotinic acid production. This reduction in nicotinic acid synthesis results in decreased NAD+ production in the liver via the Preiss–Handler pathway. Administering pncA-overexpressing Escherichia coli promotes hepatic NAD+ synthesis and alleviates alcohol-related oxidative stress damage in Fut2△IEC mice.

Conclusion: These findings reveal a gut microbiota–Fut2pncA axis that modulates alcoholic liver injury in mice, which may offer insights into microbial contributions to alcoholic liver disease in people.

Keywords

alcohol-related liver disease / fucosyltransferase 2 / NAD / nicotinamidase

Cite this article

Download citation ▾
Liuying Chen, Zhongwei Yin, Luorui Shang, Hang Yuan, Wenkang Gao, Shuhan Wang, Shuyan Wang, Xiaohua Hou, Shenglan Yang, Huikuan Chu. Intestinal Fut2 deficiency exacerbated alcohol-related liver disease by disrupting nicotinamide metabolism. Clinical and Translational Medicine, 2025, 15(8): e70447 DOI:10.1002/ctm2.70447

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023; 79: 516-537.

[2]

Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology. 2009; 50: 638-644.

[3]

Llopis M, Cassard AM, Wrzosek L, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut. 2016; 65: 830-839.

[4]

Ferrere G, Wrzosek L, Cailleux F, et al. Faecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 2017; 66: 806-815.

[5]

Goto Y, Uematsu S, Kiyono H. Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol. 2016; 17: 1244-1251.

[6]

Kashyap PC, Marcobal A, Ursell LK, et al. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc Natl Acad Sci U S A. 2013; 110: 17059-17064.

[7]

Pickard JM, Maurice CF, Kinnebrew MA, et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature. 2014; 514: 638-641.

[8]

Zhou R, Llorente C, Cao J, et al. Deficiency of intestinal α1-2-fucosylation exacerbates ethanol-induced liver disease in mice. Alcohol Clin Exp Res. 2020; 44: 1842-1851.

[9]

Saikia K, Saharia N, Singh C, Borah P, Namsa N. Association of histo-blood group antigens and predisposition to gastrointestinal diseases. J Med Virol. 2022; 94: 5149-5162.

[10]

Rühlemann MC, Hermes BM, Bang C, et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat Genet. 2021; 53: 147-155.

[11]

Maroni L, van de Graaf S, Hohenester S, Oude Elferink R, Beuers U. Fucosyltransferase 2: a genetic risk factor for primary sclerosing cholangitis and Crohn's disease—a comprehensive review. Clin Rev Allergy Immunol. 2015; 48: 182-191.

[12]

Maroni L, Hohenester SD, van de Graaf SF, et al. Knockout of the primary sclerosing cholangitis-risk gene Fut2 causes liver disease in mice. Hepatology. 2017; 66: 542-554.

[13]

Katsyuba E, Mottis A, Zietak M, et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature. 2018; 563: 354-359.

[14]

Dong H, Hao L, Zhang W, et al. Activation of AhR-NQO1 signalling pathway protects against alcohol-induced liver injury by improving redox balance. Cell Mol Gastroenterol Hepatol. 2021; 12: 793-811.

[15]

Kang H, Park Y, Lee J. Nicotinamide riboside, an NAD+ precursor, attenuates inflammation and oxidative stress by activating sirtuin 1 in alcohol-stimulated macrophages. Lab Invest. 2021; 101: 1225-1237.

[16]

Wang S, Wan T, Ye M, et al. Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway. Redox Biol. 2018; 17: 89-98.

[17]

Goikoetxea-Usandizaga N, Bravo M, Egia-Mendikute L, et al. The outcome of boosting mitochondrial activity in alcohol-associated liver disease is organ-dependent. Hepatology. 2023; 78: 878-895.

[18]

Belenky P, Bogan K, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007; 32: 12-19.

[19]

Chellappa K, McReynolds MR, Lu W, et al. NAD precursors cycle between host tissues and the gut microbiome. Cell Metab. 2022; 34: 1947-1959.

[20]

Chu H, Duan Y, Lang S, et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J Hepatol. 2020; 72: 391-400.

[21]

Bertola A, Mathews S, Ki S, Wang H, Gao B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nature Protoc. 2013; 8: 627-637.

[22]

Shats I, Williams JG, Liu J, et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 2020; 31(3): 564-579.

[23]

Lei C, Sun R, Xu G, et al. Enteric VIP-producing neurons maintain gut microbiota homeostasis through regulating epithelium fucosylation. Cell Host Microbe. 2022; 30: 1417-1434.e8.

[24]

Chini C, Zeidler J, Kashyap S, Warner G, Chini E. Evolving concepts in NAD+ metabolism. Cell Metab. 2021; 33: 1076-1087.

[25]

Wu D, Cederbaum A. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health. 2003; 27: 277-284.

[26]

Rajman L, Chwalek K, Sinclair D. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018; 27: 529-547.

[27]

Bogan K, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008; 28: 115-130.

[28]

Karpe F, Frayn K. The nicotinic acid receptor–a new mechanism for an old drug. Lancet. 2004; 363: 1892-1894.

[29]

Cantó C, Houtkooper RH, Pirinen E, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012; 15: 838-847.

[30]

Shats I, Li X. Bacteria boost host NAD metabolism. Aging (Albany NY). 2020; 12: 23425-23426.

[31]

Yaku K, Palikhe S, Izumi H, et al. BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities. Nat Commun. 2021; 12: 6767.

[32]

Wang D, Qing S, Miao Z, et al. Hepatic Nampt deficiency aggravates dyslipidemia and fatty liver in high-fat diet-fed mice. Cells. 2023; 12: 568.

[33]

Dall M, Hassing AS, Niu L, et al. Hepatocyte-specific perturbation of NAD+ biosynthetic pathways in mice induces reversible nonalcoholic steatohepatitis-like phenotypes. J Biol Chem. 2021; 297: 101388.

[34]

Gazzaniga F, Stebbins R, Chang S, McPeek M, Brenner C. Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev. 2009; 73: 529-541.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/