Single-cell atlas reveals heterogeneous response to FcRn blockade in anti-AChR antibody-positive generalised myasthenia gravis
Hui-Ning Li , Jingjing Liu , Xiao-Yu Huang , Lijie Zhu , Zhirui Liu , Chun-Sheng Yang , Bo Zhang , Shixiong Huang , Fu-Dong Shi , Zhigang Cai , Chao Zhang
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (8) : e70436
Single-cell atlas reveals heterogeneous response to FcRn blockade in anti-AChR antibody-positive generalised myasthenia gravis
Background: Myasthenia gravis (MG) is an autoimmune disease predominantly driven by autoantibodies targeting acetylcholine receptor (AChR), resulting in muscle weakness. Efgartigimod, a neonatal Fc receptor (FcRn) blocker, reduces pathogenic immunoglobulin G in anti-AChR antibody-positive generalised MG (gMG). This study aimed to identify immune mechanisms underlying MG pathology and response to efgartigimod.
Methods: We constructed a single-cell atlas of peripheral immune cells from treatment-naïve and efgartigimod-treated patients with gMG. Comprehensive immunophenotyping was performed to compare the clonal diversity of B- and T-cell populations, alongside experimental validation to assess the activation of Th17-related pathways before and after FcRn blockade.
Results: B cells in patients with gMG exhibit heightened activation and differentiation, while T cells display distinct pro-inflammatory phenotypes. Enhanced intercellular signalling contributed to the pathogenicity associated with gMG. Efgartigimod mitigated upregulated antigen processing and presentation pathways in MG. Additionally, B-cell clonal diversity and IGHG1-bearing B-cell receptors increased. Transcriptional factor alterations were noted in suboptimal responders. Regulation of T-cell activity, particularly within Th17-related pathways, was associated with remission rates.
Conclusions: These findings underscore immune heterogeneity and dynamics during efgartigimod treatment, providing mechanistic insights into therapeutic response in gMG.
FcRn blockade / myasthenia gravis / single-cell RNA sequencing / therapeutic response
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.
/
| 〈 |
|
〉 |