Addressing osteoblast senescence: Molecular pathways and the frontier of anti-ageing treatments

Zhengdong Zhang , Pan Liu , Yu Song , Liang Ma , Yan Xu , Jie Lei , Bide Tong , Dingchao Zhu , Huaizhen Liang , Hongchuan Wang , Xingyu Zhou , Zixuan Ou , Junyu Wei , Hanpeng Xu , Di Wu , Shuchang Peng , Yifan Du , Zhi Du , Bingjin Wang , Zhiwei Liao , Wencan Ke , Kangcheng Zhao , Xiqin Xia , Lei Tan , Xiaobo Feng , Gang Liu , Shuai Li , Kun Wang , Cao Yang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70417

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70417 DOI: 10.1002/ctm2.70417
REVIEW

Addressing osteoblast senescence: Molecular pathways and the frontier of anti-ageing treatments

Author information +
History +
PDF

Abstract

Background: Osteoblast senescence is a central driverof age-related osteoporosis. Accumulating evidence shows that counteractingthis senescence can substantially mitigate bone loss. In this review, we summarize the hallmarks of osteoblast senescence, the signaling pathways involved, and therapeutic strategies that target osteoblast senescence tocombat age-related osteoporosis.

Methods: Chronic diseases associated with ageingpose a significant threat to human health. Studies have shown that osteoporosisis closely linked to the ageing process of the body and the senescence ofosteoblasts within the bone microenvironment. Counteracting the senescence ofosteoblasts and maintaining the balance of differentiation, proliferation andfunction between osteoclasts and osteoblasts has been a key focus in the research of age-related osteoporosis and bone loss. The biological behaviour andfunctionality of the osteoblast lineage related to senescence are modulated bya variety of targets, including signalling pathways, proteins and genes associated with ageing. This review aims to discuss the senescence-related characteristics of the osteoblast lineage, dissect the interplay and mechanisms between it and ageing-associated signalling pathways, proteinsand genes, as well as current strategies for the prevention and treatment ofosteoblast senescence.

Conclusion: This review systematically examines the regulatory interactions among markers, therapeutic targets, and signalingpathways associated with osteoblast senescence, alongside current potential strategies for targeting this process. It provides more comprehensive information for future research into the complex mechanisms underlying age-related osteoporosis driven by osteoblast senescence.

Keywords

ageing-related signalling pathways / anti-ageing strategies / bone microenvironment / osteoblast senescence / SASP

Cite this article

Download citation ▾
Zhengdong Zhang, Pan Liu, Yu Song, Liang Ma, Yan Xu, Jie Lei, Bide Tong, Dingchao Zhu, Huaizhen Liang, Hongchuan Wang, Xingyu Zhou, Zixuan Ou, Junyu Wei, Hanpeng Xu, Di Wu, Shuchang Peng, Yifan Du, Zhi Du, Bingjin Wang, Zhiwei Liao, Wencan Ke, Kangcheng Zhao, Xiqin Xia, Lei Tan, Xiaobo Feng, Gang Liu, Shuai Li, Kun Wang, Cao Yang. Addressing osteoblast senescence: Molecular pathways and the frontier of anti-ageing treatments. Clinical and Translational Medicine, 2025, 15(7): e70417 DOI:10.1002/ctm2.70417

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Warner HR, Sprott RL, Schneider EL, Butler RN. Modern Biological Theories of Aging. 1987.

[2]

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585-621.

[3]

Ocampo A, Reddy P, Martinez-Redondo P, et al. Vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016; 167: 1719-1733. e1712.

[4]

Kenyon CJ. The genetics of ageing. Nature. 2010; 464: 504-512.

[5]

Yang N, Liu Y. The role of the immune microenvironment in bone regeneration. Int J Med Sci. 2021; 18: 3697-3707.

[6]

Adejuyigbe B, Kallini J, Chiou D, Kallini JR. Osteoporosis: molecular pathology, diagnostics, and therapeutics. Int J Mol Sci. 2023; 24(19): 14583.

[7]

Margetts TJ, Wang HS, Karnik SJ, et al. From the mind to the spine: the intersecting world of Alzheimer's and osteoporosis. Curr Osteoporos Rep. 2024; 22: 152-164.

[8]

Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int. 1997; 7: 407-413.

[9]

Hurtado Y, Hernandez OA, De Leon DPA, Duque G. Challenges in delivering effective care for older persons with fragility fractures. Clin Interv Aging. 2024; 19: 133-140.

[10]

Liu P, Wang W, Li Z, et al. Ferroptosis: a new regulatory mechanism in osteoporosis. Oxid Med Cell Longev. 2022; 2022: 2634431.

[11]

Liu P, Tu J, Wang W, et al. Effects of mechanical stress stimulation on function and expression mechanism of osteoblasts. Front Bioeng Biotechnol. 2022; 10: 830722.

[12]

Bassan Marinho Maciel G, Marinho Maciel R, Linhares Ferrazzo K, Cademartori Danesi C. Etiopathogenesis of medication-related osteonecrosis of the jaws: a review. J Mol Med (Berl). 2024; 102: 353-364.

[13]

Alnaqbi KA, Al Zeyoudi J, Aljaberi AK. Cardiac arrhythmia and heart failure shortly after starting romosozumab for osteoporosis: a case-based review. Cureus. 2023; 15: e50303.

[14]

Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965; 37: 614-636.

[15]

Chang BD, Broude EV, Dokmanovic M, et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 1999; 59: 3761-3767.

[16]

Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014; 28: 99-114.

[17]

Sorrenti V, Buriani A, Fortinguerra S, et al. Cell survival, death, and proliferation in senescent and cancer cells: the role of (poly)phenols. Adv Nutr. 2023; 14: 1111-1130.

[18]

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 153: 1194-1217.

[19]

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023; 186: 243-278.

[20]

Takegahara N, Kim H, Choi Y. Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med. 2024; 56: 264-272.

[21]

Sabini E, Arboit L, Khan MP, Lanzolla G, Schipani E. Oxidative phosphorylation in bone cells. Bone Rep. 2023; 18: 101688.

[22]

Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 2022; 10: 48.

[23]

Mizoguchi T, Ono N. The diverse origin of bone-forming osteoblasts. J Bone Miner Res. 2021; 36: 1432-1447.

[24]

Doolittle ML, Ackert-Bicknell CL, Jonason JH. Isolation and culture of neonatal mouse calvarial osteoblasts. Methods Mol Biol. 2021; 2230: 425-436.

[25]

Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89: 755-764.

[26]

Komori T. Whole aspect of runx2 functions in skeletal development. Int J Mol Sci. 2022; 23: 5776.

[27]

Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng. 2023; 14: 20417314231172573.

[28]

Wu Y, Zhang M, Chen X, Zhou Y, Chen Z. Metabolomic analysis to elucidate the change of the n-3 polyunsaturated fatty acids in senescent osteoblasts. Biosci Biotechnol Biochem. 2021; 85: 611-620.

[29]

Tani S, Okada H, Chung UI, Ohba S, Hojo H. The progress of stem cell technology for skeletal regeneration. Int J Mol Sci. 2021: 22: 1404.

[30]

Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019; 4: 22.

[31]

Gou Y, Huang Y, Luo W, et al. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater. 2024; 34: 51-63.

[32]

Behfarnia P, Fazlalizadeh S, Nasr-Esfahani MH, Ejeian F, Mogharehabed A. Isolation and characterization of human periodontal ligament stem cells under the terms of use in clinical application: a pilot study. Dent Res J (Isfahan). 2023; 20: 105.

[33]

Feehan J, Nurgali K, Apostolopoulos V, Al Saedi A, Duque G. Circulating osteogenic precursor cells: building bone from blood. EBioMedicine. 2019; 39: 603-611.

[34]

Feehan J, Nurgali K, Apostolopoulos V, Duque G. Development and validation of a new method to isolate, expand, and differentiate circulating osteogenic precursor (COP) cells. Bone Rep. 2021; 15: 101109.

[35]

Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003; 33: 919-926.

[36]

Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev. 2006; 5: 91-116.

[37]

Peterson WJ, Tachiki KH, Yamaguchi DT. Serial passage of MC3T3-E1 cells down-regulates proliferation during osteogenesis in vitro. Cell Prolif. 2004; 37: 325-336.

[38]

Wilkesmann S, Fellenberg J, Nawaz Q, et al. Primary osteoblasts, osteoblast precursor cells or osteoblast-like cell lines: which human cell types are (most) suitable for characterizing 45S5-bioactive glass?. J Biomed Mater Res A. 2020; 108: 663-674.

[39]

Fallah A, Beke A, Oborn C, Soltys CL, Kannu P. Direct reprogramming of fibroblasts to osteoblasts: techniques and methodologies. Stem Cells Transl Med. 2024; 13: 362-370.

[40]

Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021; 22: 410-424.

[41]

Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med. 2019; 51: 1-8.

[42]

Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995; 92: 9363-9367.

[43]

Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol. 2023; 11: 1323678.

[44]

Martini H, Passos JF. Cellular senescence: all roads lead to mitochondria. FEBS J. 2023; 290: 1186-1202.

[45]

Valek L, Heidler J, Scheving R, Wittig I, Tegeder I. Nitric oxide contributes to protein homeostasis by S-nitrosylations of the chaperone HSPA8 and the ubiquitin ligase UBE2D. Redox Biol. 2019; 20: 217-235.

[46]

Schmucker DL, Sachs H. Quantifying dense bodies and lipofuscin during aging: a morphologist's perspective. Arch Gerontol Geriatr. 2002; 34: 249-261.

[47]

St Sauver JL, Weston SA, Atkinson EJ, et al. Biomarkers of cellular senescence and risk of death in humans. Aging Cell. 2023; 22: e14006.

[48]

Dang Y, An Y, He J, et al. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell. 2020; 19: e13060.

[49]

Valieva Y, Ivanova E, Fayzullin A, Kurkov A, Igrunkova A. Senescence-associated beta-galactosidase detection in pathology. Diagnostics (Basel). 2022; 12: 2309.

[50]

Prasnikar E, Borisek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021; 66: 101251.

[51]

Lee BY, Han JA, Im JS, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006; 5: 187-195.

[52]

Hernandez-Segura A, Brandenburg S, Demaria M. Induction and Validation of Cellular Senescence in Primary Human Cells. J Vis Exp. 2018; 136: 57782.

[53]

Walton CC, Andersen JK. Unknown fates of (brain) oxidation or UFO: close encounters with neuronal senescence. Free Radic Biol Med. 2019; 134: 695-701.

[54]

Hildebrand DG, Lehle S, Borst A, Haferkamp S, Essmann F, Schulze-Osthoff K. alpha-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle. 2013; 12: 1922-1927.

[55]

Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting cell senescence and senolytics: novel interventions for age-related endocrine dysfunction. Endocr Rev. 2024; 45(5): 655-675.

[56]

Wu F, Liu J, Tao M, Wang M, Ren X, Hai Z. beta-Galactosidase-activatable fluorescent and photoacoustic imaging of tumor senescence. Anal Chem. 2023; 95: 10481-10485.

[57]

Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479: 232-236.

[58]

Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell. 2019; 179: 813-827.

[59]

Suryadevara V, Hudgins AD, Rajesh A, et al. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol. 2024; 25(12): 1001-1023.

[60]

Frescas D, Hall BM, Strom E, et al. Murine mesenchymal cells that express elevated levels of the CDK inhibitor p16(Ink4a) in vivo are not necessarily senescent. Cell Cycle. 2017; 16: 1526-1533.

[61]

Hall BM, Balan V, Gleiberman AS, et al. p16(Ink4a) and senescence-associated beta-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY). 2017; 9: 1867-1884.

[62]

Helman A, Klochendler A, Azazmeh N, et al. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nat Med. 2016; 22: 412-420.

[63]

Cohn RL, Gasek NS, Kuchel GA, Xu M. The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol. 2023; 33: 9-17.

[64]

Georgakopoulou EA, Tsimaratou K, Evangelou K, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 2013; 5: 37-50.

[65]

Horiguchi H, Kadomatsu T, Yamashita T, et al. ANGPTL2 promotes immune checkpoint inhibitor-related murine autoimmune myocarditis. Commun Biol. 2023; 6: 965.

[66]

Lin Y, Li Y, Liang G, Yang X, Yang J, Hu Q, et al. Single-cell transcriptome analysis of aging mouse liver. FASEB J. 2024; 38: e23473.

[67]

Sole-Boldo L, Raddatz G, Schutz S, et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. 2020; 3: 188.

[68]

Lai Y, Ramirez-Pardo I, Isern J, et al. Multimodal cell atlas of the ageing human skeletal muscle. Nature. 2024; 629: 154-164.

[69]

Ortiz-Morales AM, Alcala-Diaz JF, Rangel-Zuniga OA, et al. Biological senescence risk score. A practical tool to predict biological senescence status. Eur J Clin Invest. 2020; 50: e13305.

[70]

Katsyuba E, Romani M, Hofer D, Auwerx J. NAD(+) homeostasis in health and disease. Nat Metab. 2020; 2: 9-31.

[71]

Kim HN, Ponte F, Warren A, et al. A decrease in NAD(+) contributes to the loss of osteoprogenitors and bone mass with aging. NPJ Aging Mech Dis. 2021; 7: 8.

[72]

Nacarelli T, Lau L, Fukumoto T, et al. NAD(+) metabolism governs the proinflammatory senescence-associated secretome. Nat Cell Biol. 2019; 21: 397-407.

[73]

Blagosklonny MV. Cell senescence, rapamycin and hyperfunction theory of aging. Cell Cycle. 2022; 21: 1456-1467.

[74]

Fancy NN, Smith AM, Caramello A, et al. Characterisation of premature cell senescence in Alzheimer's disease using single nuclear transcriptomics. Acta Neuropathol. 2024; 147: 78.

[75]

Saul D, Kosinsky RL, Atkinson EJ, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022; 13: 4827.

[76]

Xiao Y, Jin W, Ju L, et al. Tracking single-cell evolution using clock-like chromatin accessibility loci. Nat Biotechnol. 2024; 43(5): 784-798.

[77]

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019; 20: 299-309.

[78]

Aird KM, Zhang R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol. 2013; 965: 185-196.

[79]

Narita M, Nunez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003; 113: 703-716.

[80]

Cruickshanks HA, McBryan T, Nelson DM, et al. Senescent cells harbour features of the cancer epigenome. Nat Cell Biol. 2013; 15: 1495-1506.

[81]

Roger L, Tomas F, Gire V. Mechanisms and regulation of cellular senescence. Int J Mol Sci. 2021; 22(23): 13173.

[82]

Swanson EC, Manning B, Zhang H, Lawrence JB. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol. 2013; 203: 929-942.

[83]

Blackburn EH. Switching and signaling at the telomere. Cell. 2001; 106: 661-673.

[84]

Robles SJ, Adami GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene. 1998; 16: 1113-1123.

[85]

Yu HJ, Byun YH, Park CK. Techniques for assessing telomere length: a methodological review. Comput Struct Biotechnol J. 2024; 23: 1489-1498.

[86]

Carneiro MC, Henriques CM, Nabais J, Ferreira T, Carvalho T, Ferreira MG. Short telomeres in key tissues initiate local and systemic aging in zebrafish. PLoS Genet. 2016; 12: e1005798.

[87]

Rossiello F, Jurk D, Passos JF, d'Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol. 2022; 24: 135-147.

[88]

Li D, Yuan Q, Wang W. The role of telomeres in musculoskeletal diseases. J Int Med Res. 2012; 40: 1242-1250.

[89]

Wang H, Chen Q, Lee SH, Choi Y, Johnson FB, Pignolo RJ. Impairment of osteoblast differentiation due to proliferation-independent telomere dysfunction in mouse models of accelerated aging. Aging Cell. 2012; 11: 704-713.

[90]

Brennan TA, Egan KP, Lindborg CM, et al. Mouse models of telomere dysfunction phenocopy skeletal changes found in human age-related osteoporosis. Dis Model Mech. 2014; 7: 583-592.

[91]

Yilmaz D, Mathavan N, Wehrle E, Kuhn GA, Muller R. Mouse models of accelerated aging in musculoskeletal research for assessing frailty, sarcopenia, and osteoporosis—A review. Ageing Res Rev. 2024; 93: 102118.

[92]

Li C, Wei GJ, Xu L, Rong JS, Tao SQ, Wang YS. The involvement of senescence induced by the telomere shortness in the decline of osteogenic differentiation in BMSCs. Eur Rev Med Pharmacol Sci. 2017; 21: 1117-1124.

[93]

Fang H, Deng Z, Liu J, Chen S, Deng Z, Li W. The mechanism of bone remodeling after bone aging. Clin Interv Aging. 2022; 17: 405-415.

[94]

Valdes AM, Richards JB, Gardner JP, et al. Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int. 2007; 18: 1203-1210.

[95]

Tao L, Huang Q, Yang R, et al. The age modification to leukocyte telomere length effect on bone mineral density and osteoporosis among Chinese elderly women. J Bone Miner Metab. 2019; 37: 1004-1012.

[96]

Gruber HJ, Semeraro MD, Renner W, Herrmann M. Telomeres and age-related diseases. Biomedicines. 2021; 9: 1335.

[97]

Kveiborg M, Kassem M, Langdahl B, Eriksen EF, Clark BF, Rattan SI. Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech Ageing Dev. 1999; 106: 261-271.

[98]

Kakridonis F, Pneumatikos SG, Vakonaki E, et al. Telomere length as a predictive biomarker in osteoporosis (review). Biomed Rep. 2023; 19: 87.

[99]

Smoom R, May CL, Ortiz V, et al. Telomouse-a mouse model with human-length telomeres generated by a single amino acid change in RTEL1. Nat Commun. 2023; 14: 6708.

[100]

Lopez-Gil L, Pascual-Ahuir A, Proft M. Genomic instability and epigenetic changes during aging. Int J Mol Sci. 2023; 24: 14279.

[101]

Vijg J. From DNA damage to mutations: all roads lead to aging. Ageing Res Rev. 2021; 68: 101316.

[102]

Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process. Nature. 2021; 592: 695-703.

[103]

Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage-how and why we age?. Elife. 2021; 10: e62852.

[104]

Fumagalli M, Rossiello F, Clerici M, et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 2012; 14: 355-365.

[105]

Jullien L, Mestre M, Roux P, Gire V. Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response. Nucleic Acids Res. 2013; 41: 900-911.

[106]

Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007; 8: 729-740.

[107]

Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004; 14: 501-513.

[108]

Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990; 345: 458-460.

[109]

Trakarnphornsombat W, Kimura H. Live-cell tracking of gamma-H2AX kinetics reveals the distinct modes of ATM and DNA-PK in the immediate response to DNA damage. J Cell Sci. 2023; 136: jcs260698.

[110]

Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J. 2019; 38: e101801.

[111]

Victorelli S, Passos JF. Telomeres and cell senescence—size matters not. EBioMedicine. 2017; 21: 14-20.

[112]

Hewitt G, Jurk D, Marques FD, et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun. 2012; 3: 708.

[113]

Rosso I, Jones-Weinert C, Rossiello F, et al. Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs. Nat Commun. 2023; 14: 7086.

[114]

Ren Y, Yang P, Li C, et al. Ionizing radiation triggers mitophagy to enhance DNA damage in cancer cells. Cell Death Discov. 2023; 9: 267.

[115]

Mao X, Lee NK, Saad SE, Fong IL. Clinical translation for targeting DNA damage repair in non-small cell lung cancer: a review. Transl Lung Cancer Res. 2024; 13: 375-397.

[116]

Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021; 6: 254.

[117]

Nicolaije C, Diderich KE, Botter SM, et al. Age-related skeletal dynamics and decrease in bone strength in DNA repair deficient male trichothiodystrophy mice. PLoS One. 2012; 7: e35246.

[118]

Kim HN, Chang J, Shao L, et al. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell. 2017; 16: 693-703.

[119]

da Luz, Dias R, Basso B, et al. Leucine reduces the proliferation of MC3T3-E1 cells through DNA damage and cell senescence. Toxicol In Vitro. 2018; 48: 1-10.

[120]

Sjakste N, Riekstina U. DNA damage and repair in differentiation of stem cells and cells of connective cell lineages: a trigger or a complication?. Eur J Histochem. 2021; 65: 3236.

[121]

Pignolo RJ, Law SF, Chandra A. Bone aging, cellular senescence, and osteoporosis. JBMR Plus. 2021; 5: e10488.

[122]

Pereira B, Correia FP, Alves IA, et al. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev. 2024; 95: 102204.

[123]

Ogrodnik M, Gladyshev VN. The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. Nat Aging. 2023; 3: 766-775.

[124]

Faul JD, Kim JK, Levine ME, Thyagarajan B, Weir DR, Crimmins EM. Epigenetic-based age acceleration in a representative sample of older Americans: associations with aging-related morbidity and mortality. Proc Natl Acad Sci U S A. 2023; 120: e2215840120.

[125]

Zabransky DJ, Jaffee EM, Weeraratna AT. Shared genetic and epigenetic changes link aging and cancer. Trends Cell Biol. 2022; 32: 338-350.

[126]

Wu YL, Lin ZJ, Li CC, et al. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther. 2023; 8: 98.

[127]

Yalaev BI, Khusainova RI. Epigenetic regulation of bone remodeling and its role in the pathogenesis of primary osteoporosis. Vavilovskii Zhurnal Genet Selektsii. 2023; 27: 401-410.

[128]

Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015; 84: 435-464.

[129]

Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2018; 217: 51-63.

[130]

Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013; 10: 274-283.

[131]

Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019; 20: 421-435.

[132]

Santra M, Dill KA, de Graff AMR. Proteostasis collapse is a driver of cell aging and death. Proc Natl Acad Sci U S A. 2019; 116: 22173-22178.

[133]

Tang JX, Xiao FH. Editorial: the regulation of proteostasis in aging. Front Cell Dev Biol. 2023; 11: 1221510.

[134]

Llewellyn J, Hubbard SJ, Swift J. Translation is an emerging constraint on protein homeostasis in ageing. Trends Cell Biol. 2024; 34(8): 646-656.

[135]

Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature. 2022; 601(7894): 637-642.

[136]

Snieckute G, Ryder L, Vind AC, et al. ROS-induced ribosome impairment underlies ZAKα-mediated metabolic decline in obesity and aging. Science. 2023; 382(6675): eadf3208.

[137]

Wang T, Huang S, He C. Senescent cells: a therapeutic target for osteoporosis. Cell Prolif. 2022; 55: e13323.

[138]

Du N, Yang R, Jiang S, et al. Anti-aging drugs and the related signal pathways. Biomedicines. 2024; 12: 127.

[139]

Goyal P, Maurer MS, Roh J. Aging in heart failure: embracing biology over chronology: JACC family series. JACC Heart Fail. 2024; 12: 795-809.

[140]

Zhang Y, Li Q, Niu Y, et al. Research progress on aging mechanism and drugs and the role of stem cells in anti-aging process. Exp Gerontol. 2023; 179: 112248.

[141]

Fekete M, Szarvas Z, Fazekas-Pongor V, et al. Nutrition strategies promoting healthy aging: from improvement of cardiovascular and brain health to prevention of age-associated diseases. Nutrients. 2022; 15: 47.

[142]

Mico V, Berninches L, Tapia J, Daimiel L. NutrimiRAging: micromanaging nutrient sensing pathways through nutrition to promote healthy aging. Int J Mol Sci. 2017; 18: 915.

[143]

Jeong JH, Han JS, Jung Y, et al. A new AMPK isoform mediates glucose-restriction induced longevity non-cell autonomously by promoting membrane fluidity. Nat Commun. 2023; 14: 288.

[144]

Tenchov R, Sasso JM, Wang X, Zhou QA. Aging hallmarks and progression and age-related diseases: a landscape view of research advancement. ACS Chem Neurosci. 2024; 15: 1-30.

[145]

Anding AL, Baehrecke EH. Cleaning house: selective autophagy of organelles. Dev Cell. 2017; 41: 10-22.

[146]

Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: a review of the literature. Ageing Res Rev. 2018; 47: 183-197.

[147]

Min SH, Kang GM, Park JW, Kim MS. Beneficial effects of low-grade mitochondrial stress on metabolic diseases and aging. Yonsei Med J. 2024; 65: 55-69.

[148]

Liu P, Zhang Z, Cai Y, Li Z, Zhou Q, Chen Q. Ferroptosis: mechanisms and role in diabetes mellitus and its complications. Ageing Res Rev. 2024; 94: 102201.

[149]

Liu J, Yang J. Uncarboxylated osteocalcin inhibits high glucose-induced ROS production and stimulates osteoblastic differentiation by preventing the activation of PI3K/Akt in MC3T3-E1 cells. Int J Mol Med. 2016; 37: 173-181.

[150]

Hwang SM, Kim TY, Kim A, et al. Resveratrol facilitates bone formation in high-glucose conditions. Front Physiol. 2024; 15: 1347756.

[151]

Fang ZB, Wang GX, Cai GZ, et al. Association between fatty acids intake and bone mineral density in adults aged 20-59: nHANES 2011-2018. Front Nutr. 2023; 10: 1033195.

[152]

Zhang YW, Song PR, Wang SC, Liu H, Shi ZM, Su JC. Diets intervene osteoporosis via gut-bone axis. Gut Microbes. 2024; 16: 2295432.

[153]

Minematsu A, Nishii Y, Sakata S. High-fat/high-sucrose diet results in higher bone mass in aged rats. Bone Rep. 2018; 8: 18-24.

[154]

Hagg S, Jylhava J. Sex differences in biological aging with a focus on human studies. Elife. 2021; 10: e63425.

[155]

Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol. 2001; 2: REVIEWS1018.

[156]

Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: an update. Cell Metab. 2017; 25: 57-71.

[157]

Miwa S, Kashyap S, Chini E, von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 2022; 132(13): e158447.

[158]

Ding X, Fang T, Pang X, et al. Mitochondrial DNA abnormalities and metabolic syndrome. Front Cell Dev Biol. 2023; 11: 1153174.

[159]

Zong Y, Li H, Liao P, et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther. 2024; 9: 124.

[160]

Picca A, Guerra F, Calvani R, et al. Extracellular vesicles and damage-associated molecular patterns: a pandora's box in health and disease. Front Immunol. 2020; 11: 601740.

[161]

Cao N, Wang Z, Huang C, et al. Cmpk2 regulates mitochondrial function in glucocorticoid-induced osteoblast senescence and affects glucocorticoid-inhibited osteoblast differentiation. Arch Gerontol Geriatr. 2023; 114: 105080.

[162]

Kennedy SR, Salk JJ, Schmitt MW, Loeb LA. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 2013; 9: e1003794.

[163]

Greaves LC, Nooteboom M, Elson JL, et al. Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing. PLoS Genet. 2014; 10: e1004620.

[164]

He Y, Ding Q, Chen W, et al. LONP1 downregulation with ageing contributes to osteoarthritis via mitochondrial dysfunction. Free Radic Biol Med. 2022; 191: 176-190.

[165]

Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharm Sin B. 2020; 10: 1866-1879.

[166]

Picca A, Mankowski RT, Burman JL, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol. 2018; 15: 543-554.

[167]

Suh J, Kim NK, Shim W, et al. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metab. 2023; 35: 345-360. e347.

[168]

Catheline SE, Kaiser E, Eliseev RA. Mitochondrial genetics and function as determinants of bone phenotype and aging. Curr Osteoporos Rep. 2023; 21: 540-551.

[169]

Wang K, Peng X, Zhang R, Wu X, Mao L. COL6A3 enhances the osteogenic differentiation potential of BMSCs by promoting mitophagy in the osteoporotic microenvironment. Mol Biol Rep. 2024; 51: 206.

[170]

Yan C, Shi Y, Yuan L, et al. Mitochondrial quality control and its role in osteoporosis. Front Endocrinol (Lausanne). 2023; 14: 1077058.

[171]

Rendina-Ruedy E, Rosen CJ. Parathyroid hormone (PTH) regulation of metabolic homeostasis: an old dog teaches us new tricks. Mol Metab. 2022; 60: 101480.

[172]

Lin PI, Tai YT, Chan WP, Lin YL, Liao MH, Chen RM. Estrogen/ERalpha signaling axis participates in osteoblast maturation via upregulating chromosomal and mitochondrial complex gene expressions. Oncotarget. 2018; 9: 1169-1186.

[173]

Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019; 44: 3-15.

[174]

Chen Q, Lesnefsky EJ. Time to target mitochondrial reactive oxygen species generation from. Complex I Function (Oxf). 2022; 3: zqac010.

[175]

Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020; 13: 1057-1073.

[176]

Phetfong J, Sanvoranart T, Nartprayut K, et al. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett. 2016; 21: 12.

[177]

Zhu C, Shen S, Zhang S, Huang M, Zhang L, Chen X. Autophagy in bone remodeling: a regulator of oxidative stress. Front Endocrinol (Lausanne). 2022; 13: 898634.

[178]

Courtois-Cox S, Jones SL, Cichowski K. Many roads lead to oncogene-induced senescence. Oncogene. 2008; 27: 2801-2809.

[179]

Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules. 2020: 10.

[180]

Tonnessen-Murray CA, Lozano G, Jackson JG. The regulation of cellular functions by the p53 protein: cellular senescence. Cold Spring Harb Perspect Med. 2017; 7: a026112.

[181]

Kreis NN, Louwen F, Yuan J. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation. Migration and Cancer Therapy Cancers (Basel). 2019; 11: 1220.

[182]

Harper JW, Elledge SJ, Keyomarsi K, et al. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell. 1995; 6: 387-400.

[183]

Kreis NN, Louwen F, Yuan J. Less understood issues: p21(Cip1) in mitosis and its therapeutic potential. Oncogene. 2015; 34: 1758-1767.

[184]

Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010; 24: 2463-2479.

[185]

Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015; 15: 397-408.

[186]

Serrano M. The tumor suppressor protein p16INK4a. Exp Cell Res. 1997; 237: 7-13.

[187]

Avolio R, Ingles-Ferrandiz M, Ciocia A, et al. Coordinated post-transcriptional control of oncogene-induced senescence by UNR/CSDE1. Cell Rep. 2022; 38: 110211.

[188]

de Haan G, SS Lazare. Aging of hematopoietic stem cells. Blood. 2018; 131: 479-487.

[189]

Oh J, Lee YD, Wagers AJ. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014; 20: 870-880.

[190]

Ren R, Ocampo A, Liu GH, Izpisua Belmonte JC. Regulation of stem cell aging by metabolism and epigenetics. Cell Metab. 2017; 26: 460-474.

[191]

Herrmann M, Pusceddu I, Marz W, Herrmann W. Telomere biology and age-related diseases. Clin Chem Lab Med. 2018; 56: 1210-1222.

[192]

Hecker M, Buhring J, Fitzner B, Rommer PS, Zettl UK. Genetic, environmental and lifestyle determinants of accelerated telomere attrition as contributors to risk and severity of multiple sclerosis. Biomolecules. 2021; 11: 1510.

[193]

Lin J, Epel E. Stress and telomere shortening: insights from cellular mechanisms. Ageing Res Rev. 2022; 73: 101507.

[194]

Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging hallmarks and the role of oxidative stress. Antioxidants (Basel). 2023; 12: 651.

[195]

Kharas MG, Okabe R, Ganis JJ, et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood. 2010; 115: 1406-1415.

[196]

Moretton A, Loizou JI. Interplay between cellular metabolism and the DNA damage response in cancer. Cancers (Basel). 2020; 12: 2051.

[197]

Zhuang L, Visalakshan RM, Kaur P. Dermal pericytes exhibit declined ability to promote human skin regeneration with ageing in 3d organotypic culture models. Cells. 2021; 10: 3051.

[198]

Dayanidhi S, Kinney MC, Dykstra PB, Lieber RL. Does a reduced number of muscle stem cells impair the addition of sarcomeres and recovery from a skeletal muscle contracture? a transgenic mouse model. Clin Orthop Relat Res. 2020; 478: 886-899.

[199]

Josephson AM, Bradaschia-Correa V, Lee S, et al. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci U S A. 2019; 116: 6995-7004.

[200]

Li H, Liu P, Xu S, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017; 127: 1241-1253.

[201]

Liu W, Zhang L, Xuan K, et al. Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells. Bone Res. 2018; 6: 27.

[202]

De Cecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019; 566: 73-78.

[203]

Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020; 34: 1565-1576.

[204]

Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol. 2024; 25(12): 958-978.

[205]

Kuilman T, Peeper DS. Senescence-messaging secretome: sMS-ing cellular stress. Nat Rev Cancer. 2009; 9: 81-94.

[206]

Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010; 16: 238-246.

[207]

Greene MA, Loeser RF. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage. 2015; 23: 1966-1971.

[208]

Fang CL, Liu B, Wan M. “Bone-SASP” in skeletal aging. Calcif Tissue Int. 2023; 113: 68-82.

[209]

Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY). 2021; 13: 19920-19941.

[210]

Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015; 17: 1049-1061.

[211]

Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: role in senescence regulation and aging. Aging Cell. 2024; 23: e13920.

[212]

Kim HJ, Kim WJ, Shin HR, et al. ROS-induced PADI2 downregulation accelerates cellular senescence via the stimulation of SASP production and NFkappaB activation. Cell Mol Life Sci. 2022; 79: 155.

[213]

Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014; 15: 482-496.

[214]

Farr JN, Fraser DG, Wang H, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016; 31: 1920-1929.

[215]

Xu L, Wang Y, Wang J, Zhai J, Ren L, Zhu G. Radiation-induced osteocyte senescence alters bone marrow mesenchymal stem cell differentiation potential via paracrine signaling. Int J Mol Sci. 2021; 22: 9323.

[216]

Farr JN, Khosla S. Cellular senescence in bone. Bone. 2019; 121: 121-133.

[217]

Storer M, Mas A, Robert-Moreno A, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013; 155: 1119-1130.

[218]

Zhao S, Qiao Z, Pfeifer R, et al. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res. 2024; 29: 38.

[219]

Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967; 33: 437-449.

[220]

Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993; 333: 169-174.

[221]

Aman Y, Schmauck-Medina T, Hansen M, et al. Autophagy in healthy aging and disease. Nat Aging. 2021; 1: 634-650.

[222]

Nieto-Torres JL, Hansen M. Macroautophagy and aging: the impact of cellular recycling on health and longevity. Mol Aspects Med. 2021; 82: 101020.

[223]

Hela F, Aguayo-Mazzucato C. Interaction between autophagy and senescence in pancreatic beta cells. Biology (Basel). 2023; 12: 1205.

[224]

Liu ZZ, Hong CG, Hu WB, et al. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy. 2021; 17: 2766-2782.

[225]

Zhang D, Chen Y, Xu X, et al. Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling. Clin Exp Pharmacol Physiol. 2020; 47: 466-477.

[226]

Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O, Carle GF. Autophagy in bone: self-eating to stay in balance. Ageing Res Rev. 2015; 24: 206-217.

[227]

Yin X, Zhou C, Li J, et al. Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. 2019; 7: 28.

[228]

Wang J, Zhang Y, Cao J, et al. The role of autophagy in bone metabolism and clinical significance. Autophagy. 2023; 19: 2409-2427.

[229]

Jurk D, Wilson C, Passos JF, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014; 2: 4172.

[230]

Moiseeva V, Cisneros A, Sica V, et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature. 2023; 613: 169-178.

[231]

Odawara T, Yamauchi S, Ichijo H. Apoptosis signal-regulating kinase 1 promotes inflammation in senescence and aging. Commun Biol. 2024; 7: 691.

[232]

Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory processes affecting bone health and repair. Curr Osteoporos Rep. 2023; 21: 842-853.

[233]

Josephson AM, Leclerc K, Remark LH, Lopez EM, Leucht P. Systemic NF-kappaB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells. Aging (Albany NY). 2021; 13: 13421-13429.

[234]

Saavedra D, Ane-Kouri AL, Barzilai N, et al. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun Ageing. 2023; 20: 25.

[235]

Zhong X, Zhang F, Yin X, et al. Bone homeostasis and gut microbial-dependent signaling pathways. J Microbiol Biotechnol. 2021; 31: 765-774.

[236]

Xiao H, Wang Y, Chen Y, et al. Gut-bone axis research: unveiling the impact of gut microbiota on postmenopausal osteoporosis and osteoclasts through Mendelian randomization. Front Endocrinol (Lausanne). 2024; 15: 1419566.

[237]

Vicente V, Alegre A, Alberca I, Lopez Borrasca A, Gomez JR, Macias JF. Changes of contact phase proteins during haemodialysis. Haematologia (Budap). 1988; 21: 159-162.

[238]

Queiroz-Junior CM, Santos A, Galvao I, et al. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor axis as a key player in alveolar bone remodeling. Bone. 2019; 128: 115041.

[239]

Behera J, Ison J, Voor MJ, Tyagi N. Probiotics stimulate bone formation in obese mice via histone methylations. Theranostics. 2021; 11: 8605-8623.

[240]

Chen J, Kuang S, Cen J, et al. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. Int J Oral Sci. 2024; 16: 41.

[241]

Han W, Zhang H, Feng L, et al. The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm (2020). 2023; 4: e410.

[242]

Yimin E, Lu C, Zhu K, et al. Function and mechanism of exosomes derived from different cells as communication mediators in colorectal cancer metastasis. iScience. 2024; 27: 109350.

[243]

Fafian-Labora JA, O'Loghlen A. Classical and nonclassical intercellular communication in senescence and ageing. Trends Cell Biol. 2020; 30: 628-639.

[244]

Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971; 80: 147-154.

[245]

Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging. 2012; 36: 225-230.

[246]

Liu J, Liao JW, Li W, et al. Assessment of osteoporosis in lumbar spine: in vivo quantitative MR imaging of collagen bound water in trabecular bone. Front Endocrinol (Lausanne). 2022; 13: 801930.

[247]

Lee S, Benvie AM, Park HG, et al. Remodeling of gene regulatory networks underlying thermogenic stimuli-induced adipose beiging. Commun Biol. 2022; 5: 584.

[248]

Zhong L, Yao L, Tower RJ, et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife. 2020; 9: e54695.

[249]

Lanske B, Rosen C. Bone marrow adipose tissue: the first 40 years. J Bone Miner Res. 2017; 32: 1153-1156.

[250]

Singh L, Brennan TA, Russell E, et al. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone. 2016; 85: 29-36.

[251]

Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006; 4: 263-273.

[252]

Pierce JL, Begun DL, Westendorf JJ, McGee-Lawrence ME. Defining osteoblast and adipocyte lineages in the bone marrow. Bone. 2019; 118: 2-7.

[253]

Sebo ZL, Rendina-Ruedy E, Ables GP, et al. Bone marrow adiposity: basic and clinical implications. Endocr Rev. 2019; 40: 1187-1206.

[254]

Scheller EL, Rosen CJ. What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci. 2014; 1311: 14-30.

[255]

Almeida M, Kim HN, Han L, et al. Increased marrow adipogenesis does not contribute to age-dependent appendicular bone loss in female mice. Aging Cell. 2020; 19: e13247.

[256]

Chandra A, Lin T, Young T, et al. Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms. J Bone Miner Res. 2017; 32: 360-372.

[257]

Chandra A, Lagnado AB, Farr JN, et al. Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss. J Bone Miner Res. 2020; 35: 1119-1131.

[258]

Abdallah BM. Marrow adipocytes inhibit the differentiation of mesenchymal stem cells into osteoblasts via suppressing BMP-signaling. J Biomed Sci. 2017; 24: 11.

[259]

Fazeli PK, Horowitz MC, MacDougald OA, et al. Marrow fat and bone-new perspectives. J Clin Endocrinol Metab. 2013; 98: 935-945.

[260]

Gunaratnam K, Vidal C, Gimble JM, Duque G. Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology. 2014; 155: 108-116.

[261]

Zhang L, Guan Q, Wang Z, Feng J, Zou J, Gao B. Consequences of Aging on Bone. Aging Dis. 2023; 15(6): 2417-2452.

[262]

Zhang L, Fu X, Ni L, et al. Hedgehog signaling controls bone homeostasis by regulating osteogenic/adipogenic fate of skeletal stem/progenitor cells in mice. J Bone Miner Res. 2022; 37: 559-576.

[263]

Hu Y, Li X, Zhi X, et al. RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Rep. 2021; 22: e52481.

[264]

Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol (Lausanne). 2019; 10: 137.

[265]

da Silva PFL, Ogrodnik M, Kucheryavenko O, et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell. 2019; 18: e12848.

[266]

Suo J, Zou S, Wang J, et al. The RNA-binding protein Musashi2 governs osteoblast-adipocyte lineage commitment by suppressing PPARgamma signaling. Bone Res. 2022; 10: 31.

[267]

Chandra A, Lagnado AB, Farr JN, et al. Bone marrow adiposity in models of radiation- and aging-related bone loss is dependent on cellular senescence. J Bone Miner Res. 2022; 37: 997-1011.

[268]

Wang X, Wei Z, Jiang Y, Meng Z, Lu M. mTOR signaling: the interface linking cellular metabolism and hepatitis B virus replication. Virol Sin. 2021; 36: 1303-1314.

[269]

Zeng H. mTOR signaling in immune cells and its implications for cancer immunotherapy. Cancer Lett. 2017; 408: 182-189.

[270]

Gharibi B, Farzadi S, Ghuman M, Hughes FJ. Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem Cells. 2014; 32: 2256-2266.

[271]

Luo D, Ren H, Li T, Lian K, Lin D. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporos Int. 2016; 27: 1093-1101.

[272]

Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell. 2018; 17(1): e12709.

[273]

Liu F, Yuan Y, Bai L, et al. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 2021; 43: 101963.

[274]

Huang B, Wang Y, Wang W, et al. mTORC1 prevents preosteoblast differentiation through the notch signaling pathway. PLoS Genet. 2015; 11: e1005426.

[275]

Huang B, Wang W, Li Q, et al. Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat Commun. 2016; 7: 13885.

[276]

Chen A, Jin J, Cheng S, et al. mTORC1 induces plasma membrane depolarization and promotes preosteoblast senescence by regulating the sodium channel Scn1a. Bone Res. 2022; 10: 25.

[277]

Wang S, Wang J, Wang S, et al. mTOR signaling pathway in bone diseases associated with hyperglycemia. Int J Mol Sci. 2023; 24: 9198.

[278]

Gerosa L, Malvandi AM, Malavolta M, Provinciali M, Lombardi G. Exploring cellular senescence in the musculoskeletal system: any insights for biomarkers discovery?. Ageing Res Rev. 2023; 88: 101943.

[279]

Bi J, Zhang C, Lu C, et al. Age-related bone diseases: role of inflammaging. J Autoimmun. 2024; 143: 103169.

[280]

Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored?. Cell Death Differ. 2006; 13: 1027-1036.

[281]

Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022; 29: 946-960.

[282]

Zhao Y, Wu L, Yue X, et al. A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models. Elife. 2018; 7: e34701.

[283]

Wang X, Kua HY, Hu Y, et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J Cell Biol. 2006; 172: 115-125.

[284]

He Y, de Castro LF, Shin MH, et al. p53 loss increases the osteogenic differentiation of bone marrow stromal cells. Stem Cells. 2015; 33: 1304-1319.

[285]

Huttinger-Kirchhof N, Cam H, Griesmann H, Hofmann L, Beitzinger M, Stiewe T. The p53 family inhibitor DeltaNp73 interferes with multiple developmental programs. Cell Death Differ. 2006; 13: 174-177.

[286]

Vigneron A, Vousden KH. p53, ROS and senescence in the control of aging. Aging (Albany NY). 2010; 2: 471-474.

[287]

Lengner CJ, Steinman HA, Gagnon J, et al. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol. 2006; 172: 909-921.

[288]

Jin F, Wang Y, Wang X, et al. Bre enhances osteoblastic differentiation by promoting the Mdm2-mediated degradation of p53. Stem Cells. 2017; 35: 1760-1772.

[289]

Choi YJ, Lee JY, Chung CP, Park YJ. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21(Cip1) pathway and restores osteoblastic differentiation in human dental pulp stem cells. Int J Nanomedicine. 2012; 7: 5091-5106.

[290]

Xia C, Jiang T, Wang Y, Chen X, Hu Y, Gao Y. The p53/miR-145a axis promotes cellular senescence and inhibits osteogenic differentiation by targeting Cbfb in mesenchymal stem cells. Front Endocrinol (Lausanne). 2020; 11: 609186.

[291]

Shah S, Pendleton E, Couture O, et al. P53 regulation of osteoblast differentiation is mediated through specific microRNAs. Biochem Biophys Rep. 2021; 25: 100920.

[292]

Park JH, Koh EB, Seo YJ, Oh HS, Byun JH. BMP-9 improves the osteogenic differentiation ability over BMP-2 through p53 signaling in vitro in human periosteum-derived cells. Int J Mol Sci. 2023; 24(20): 15252.

[293]

Santos BF, Grenho I, Martel PJ, Ferreira BI, Link W. FOXO family isoforms. Cell Death Dis. 2023; 14: 702.

[294]

Ma X, Su P, Yin C, et al. The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci. 2020; 21: 692.

[295]

Tomiyasu H, Habara M, Hanaki S, Sato Y, Miki Y, Shimada M. FOXO1 promotes cancer cell growth through MDM2-mediated p53 degradation. J Biol Chem. 2024; 300: 107209.

[296]

Sun Z, da Fontoura CSG, Moreno M, et al. FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet. 2018; 14: e1007675.

[297]

Teixeira CC, Liu Y, Thant LM, Pang J, Palmer G, Alikhani M. Foxo1, a novel regulator of osteoblast differentiation and skeletogenesis. J Biol Chem. 2010; 285: 31055-31065.

[298]

Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014; 94: 909-950.

[299]

Sun W, Qiao W, Zhou B, et al. Overexpression of Sirt1 in mesenchymal stem cells protects against bone loss in mice by FOXO3a deacetylation and oxidative stress inhibition. Metabolism. 2018; 88: 61-71.

[300]

Zhang Y, Xiong Y, Zhou J, Xin N, Zhu Z, Wu Y. FoxO1 expression in osteoblasts modulates bone formation through resistance to oxidative stress in mice. Biochem Biophys Res Commun. 2018; 503: 1401-1408.

[301]

Ambrogini E, Almeida M, Martin-Millan M, et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 2010; 11: 136-146.

[302]

Rached MT, Kode A, Xu L, et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 2010; 11: 147-160.

[303]

Chen H, Hu X, Yang R, et al. SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH)(2)D deficiency. Int J Biol Sci. 2020; 16: 2712-2726.

[304]

Jiang Y, Luo W, Zhou F, Gong P, Xiong Y. The role of FOXO1-mediated autophagy in the regulation of bone formation. Cell Cycle. 2023; 22: 829-840.

[305]

Xia B, Dai X, Shi H, et al. Lycopene promotes osteogenesis and reduces adipogenesis through regulating FoxO1/PPARgamma signaling in ovariectomized rats and bone marrow mesenchymal stem cells. Nutrients. 2024; 16: 1443.

[306]

Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005; 308: 1181-1184.

[307]

Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007; 282: 27298-27305.

[308]

Feng P, Pang P, Sun Z, et al. Enhancer-mediated FOXO3 expression promotes MSC adipogenic differentiation by activating autophagy. Biochim Biophys Acta Mol Basis Dis. 2024; 1870: 166975.

[309]

Yadav RK, Chauhan AS, Zhuang L, Gan B. FoxO transcription factors in cancer metabolism. Semin Cancer Biol. 2018; 50: 65-76.

[310]

Orea-Soufi A, Paik J, Braganca J, Donlon TA, Willcox BJ, Link W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci. 2022; 43: 1070-1084.

[311]

Iyer S, Ambrogini E, Bartell SM, et al. FOXOs attenuate bone formation by suppressing Wnt signaling. J Clin Invest. 2013; 123: 3409-3419.

[312]

Siqueira MF, Flowers S, Bhattacharya R, et al. FOXO1 modulates osteoblast differentiation. Bone. 2011; 48: 1043-1051.

[313]

Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther. 2022; 7: 376.

[314]

Jing J, Wu Z, Wang J, et al. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther. 2023; 8: 315.

[315]

Jia L, Gu W, Zhang Y, Jiang B, Qiao X, Wen Y. Activated Yes-associated protein accelerates cell cycle, inhibits apoptosis, and delays senescence in human periodontal ligament stem cells. Int J Med Sci. 2018; 15: 1241-1250.

[316]

Wen Y, Ji Y, Zhang Y, et al. Knockdown of Yes-associated protein induces the apoptosis while inhibits the proliferation of human periodontal ligament stem cells through crosstalk between Erk and Bcl-2 signaling pathways. Int J Med Sci. 2017; 14: 1231-1240.

[317]

Jia L, Zhang Y, Ji Y, et al. YAP balances the osteogenic and adipogenic differentiation of hPDLSCs in vitro partly through the Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun. 2019; 518: 154-160.

[318]

Pocaterra A, Romani P, Dupont S. YAP/TAZ functions and their regulation at a glance. J Cell Sci. 2020; 133: jcs230425.

[319]

Kim MK, Jang JW, Bae SC. DNA binding partners of YAP/TAZ. BMB Rep. 2018; 51: 126-133.

[320]

Honda D, Okumura M, Chihara T. Crosstalk between the mTOR and Hippo pathways. Dev Growth Differ. 2023; 65: 337-347.

[321]

Santinon G, Brian I, Pocaterra A, et al. dNTP metabolism links mechanical cues and YAP/TAZ to cell growth and oncogene-induced senescence. EMBO J. 2018; 37: e97780.

[322]

Tang Y, Rowe RG, Botvinick EL, et al. MT1-MMP-dependent control of skeletal stem cell commitment via a beta1-integrin/YAP/TAZ signaling axis. Dev Cell. 2013; 25: 402-416.

[323]

Pan H, Xie Y, Zhang Z, et al. YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure. Colloids Surf B Biointerfaces. 2017; 152: 344-353.

[324]

Lorthongpanich C, Thumanu K, Tangkiettrakul K, et al. YAP as a key regulator of adipo-osteogenic differentiation in human MSCs. Stem Cell Res Ther. 2019; 10: 402.

[325]

Xiong J, Almeida M, O'Brien CA. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation. Bone. 2018; 112: 1-9.

[326]

Han J, Zhang J, Zhang X, et al. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther. 2024; 15: 386.

[327]

Baran M, Miziak P, Stepulak A, Cybulski M. The role of sirtuin 6 in the deacetylation of histone proteins as a factor in the progression of neoplastic disease. Int J Mol Sci. 2023; 25: 497.

[328]

Lambona C, Zwergel C, Valente S, Mai A. SIRT3 activation a promise in drug development? new insights into SIRT3 biology and its implications on the drug discovery process. J Med Chem. 2024; 67: 1662-1689.

[329]

Wu QJ, Zhang TN, Chen HH, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022; 7: 402.

[330]

Zhang T, Wang L, Duan X, et al. Sirtuins mediate mitochondrial quality control mechanisms: a novel therapeutic target for osteoporosis. Front Endocrinol (Lausanne). 2023; 14: 1281213.

[331]

Yang Y, Liu Y, Wang Y, et al. Regulation of SIRT1 and its roles in inflammation. Front Immunol. 2022; 13: 831168.

[332]

Wang H, Hu Z, Wu J, et al. Sirt1 promotes osteogenic differentiation and increases alveolar bone mass via bmi1 activation in mice. J Bone Miner Res. 2019; 34: 1169-1181.

[333]

Chen Y, Zhou F, Liu H, et al. SIRT1, a promising regulator of bone homeostasis. Life Sci. 2021; 269: 119041.

[334]

Rakshe PS, Dutta BJ, Chib S, Maurya N, Singh S. Unveiling the interplay of AMPK/SIRT1/PGC-1alpha axis in brain health: promising targets against aging and NDDs. Ageing Res Rev. 2024; 96: 102255.

[335]

Trinh D, Al Halabi L, Brar H, Kametani M, Nash JE. The role of SIRT3 in homeostasis and cellular health. Front Cell Neurosci. 2024; 18: 1434459.

[336]

Li Y, He X, Li Y, et al. Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: a possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J Bone Miner Res. 2011; 26: 2656-2664.

[337]

Khanh VC, Zulkifli AF, Tokunaga C, Yamashita T, Hiramatsu Y, Ohneda O. Aging impairs beige adipocyte differentiation of mesenchymal stem cells via the reduced expression of Sirtuin 1. Biochem Biophys Res Commun. 2018; 500: 682-690.

[338]

Song J, Li J, Yang F, et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow. Cell Death Dis. 2019; 10: 336.

[339]

Ong ALC, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev. 2018; 43: 64-80.

[340]

Jin C, Tan K, Yao Z, et al. A novel anti-osteoporosis mechanism of VK2: interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J Agric Food Chem. 2023; 71: 2745-2761.

[341]

Srivastava S, Bedi U, Roy P. Synergistic actions of insulin-sensitive and Sirt1-mediated pathways in the differentiation of mouse embryonic stem cells to osteoblast. Mol Cell Endocrinol. 2012; 361: 153-164.

[342]

Chen H, Liu X, Zhu W, et al. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci. 2014; 6: 103.

[343]

Zhou D, Ran Y, Yu R, Liu G, Ran D, Liu Z. SIRT1 regulates osteoblast senescence through SOD2 acetylation and mitochondrial dysfunction in the progression of osteoporosis caused by cadmium exposure. Chem Biol Interact. 2023; 382: 110632.

[344]

Li P, Mao WW, Zhang S, Zhang L, Chen ZR, Lu ZD. Sodium hydrosulfide alleviates dexamethasone-induced cell senescence and dysfunction through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells. Exp Ther Med. 2021; 21: 238.

[345]

Denu RA. SIRT3 enhances mesenchymal stem cell longevity and differentiation. Oxid Med Cell Longev. 2017; 2017: 5841716.

[346]

Huh JE, Shin JH, Jang ES, et al. Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1beta axis in mice. Sci Rep. 2016; 6: 22511.

[347]

Yoon H, Park SG, Kim HJ, et al. Nicotinamide enhances osteoblast differentiation through activation of the mitochondrial antioxidant defense system. Exp Mol Med. 2023; 55: 1531-1543.

[348]

Guo Y, Jia X, Cui Y, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol. 2021; 41: 101915.

[349]

Diao Z, Ji Q, Wu Z, et al. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 2021; 49: 4203-4219.

[350]

Liu F, Yuan L, Li L, et al. S-sulfhydration of SIRT3 combats BMSC senescence and ameliorates osteoporosis via stabilizing heterochromatic and mitochondrial homeostasis. Pharmacol Res. 2023; 192: 106788.

[351]

Ho L, Wang L, Roth TM, et al. Sirtuin-3 promotes adipogenesis, osteoclastogenesis, and bone loss in aging male mice. Endocrinology. 2017; 158: 2741-2753.

[352]

Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006; 124: 315-329.

[353]

Kim SJ, Piao Y, Lee MG, et al. Loss of Sirtuin 6 in osteoblast lineage cells activates osteoclasts, resulting in osteopenia. Bone. 2020; 138: 115497.

[354]

Moon YJ, Zhang Z, Bang IH, et al. Sirtuin 6 in preosteoclasts suppresses age- and estrogen deficiency-related bone loss by stabilizing estrogen receptor alpha. Cell Death Differ. 2019; 26: 2358-2370.

[355]

Lee TJ, Sasaki Y, Ruzycki PA, et al. Catalytic isoforms of AMP-activated protein kinase differentially regulate IMPDH activity and photoreceptor neuron function. JCI Insight. 2024; 9: e173707.

[356]

Wang N, Wang B, Maswikiti EP, et al. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment?. Cell Death Discov. 2024; 10: 237.

[357]

Salminen A. AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology. 2024; 25: 83-106.

[358]

Han Y, Liu Y, Zhang Y, et al. The role and application of the AMPK-sirtuins network in cellular senescence. Front Biosci (Landmark Ed). 2023; 28: 250.

[359]

Penfold L, Woods A, Pollard AE, et al. AMPK activation protects against prostate cancer by inducing a catabolic cellular state. Cell Rep. 2023; 42: 112396.

[360]

Maiese K. Cornerstone cellular pathways for metabolic disorders and diabetes mellitus: non-coding RNAs, Wnt signaling, and AMPK. Cells. 2023; 12: 2595.

[361]

Ye W, Wang J, Lin D, Ding Z. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int J Biol Macromol. 2020; 146: 25-35.

[362]

Lee S, Le NH, Kang D. Melatonin alleviates oxidative stress-inhibited osteogenesis of human bone marrow-derived mesenchymal stem cells through AMPK activation. Int J Med Sci. 2018; 15: 1083-1091.

[363]

Gao Y, Huang A, Zhao Y, Du Y. PMAIP1 regulates autophagy in osteoblasts via the AMPK/mTOR pathway in osteoporosis. Hum Cell. 2024; 37: 1024-1038.

[364]

Garza-Lombo C, Schroder A, Reyes-Reyes EM, Franco R. mTOR/AMPK signaling in the brain: cell metabolism, proteostasis and survival. Curr Opin Toxicol. 2018; 8: 102-110.

[365]

Ji S, Xiong M, Chen H, et al. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther. 2023; 8: 116.

[366]

Cheng M, Yuan W, Moshaverinia A, Yu B. Rejuvenation of mesenchymal stem cells to ameliorate skeletal aging. Cells. 2023; 12: 998.

[367]

Lee WS, Kim J. Insulin-like growth factor-1 signaling in cardiac aging. Biochim Biophys Acta Mol Basis Dis. 2018; 1864: 1931-1938.

[368]

Al-Samerria S, Radovick S. The role of insulin-like growth factor-1 (IGF-1) in the control of neuroendocrine regulation of growth. Cells. 2021; 10: 2664.

[369]

Le TKC, Dao XD, Nguyen DV, et al. Insulin signaling and its application. Front Endocrinol (Lausanne). 2023; 14: 1226655.

[370]

Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021; 6: 402.

[371]

Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993; 75: 59-72.

[372]

Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov. 2024; 10: 71.

[373]

Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol. 2021; 519: 111052.

[374]

Crane JL, Zhao L, Frye JS, Xian L, Qiu T, Cao X. IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res. 2013; 1: 186-194.

[375]

Xie B, Chen S, Xu Y, et al. The impact of glucagon-like peptide 1 receptor agonists on bone metabolism and its possible mechanisms in osteoporosis treatment. Front Pharmacol. 2021; 12: 697442.

[376]

Tian M, Han YB, Yang GY, Li JL, Shi CS, Tian D. The role of lactoferrin in bone remodeling: evaluation of its potential in targeted delivery and treatment of metabolic bone diseases and orthopedic conditions. Front Endocrinol (Lausanne). 2023; 14: 1218148.

[377]

Kim KS, Seu YB, Baek SH, et al. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell. 2007; 18: 4543-4552.

[378]

Yang K, Hu Y, Feng Y, et al. IGF-1R mediates crosstalk between nasopharyngeal carcinoma cells and osteoclasts and promotes tumor bone metastasis. J Exp Clin Cancer Res. 2024; 43: 46.

[379]

Ocansey DKW, Pei B, Yan Y, et al. Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med. 2020; 18: 42.

[380]

Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett. 2022; 27: 69.

[381]

Lodjak J, Verhulst S. Insulin-like growth factor 1 of wild vertebrates in a life-history context. Mol Cell Endocrinol. 2020; 518: 110978.

[382]

Li H, Yu S, Hao F, et al. Insulin-like growth factor binding protein 4 inhibits proliferation of bone marrow mesenchymal stem cells and enhances growth of neurospheres derived from the stem cells. Cell Biochem Funct. 2018; 36: 331-341.

[383]

Wu J, Wang C, Miao X, et al. Age-related insulin-like growth factor binding protein-4 overexpression inhibits osteogenic differentiation of rat mesenchymal stem cells. Cell Physiol Biochem. 2017; 42: 640-650.

[384]

Poddar A, Ahmady F, Rao SR, et al. The role of pregnancy associated plasma protein-A in triple negative breast cancer: a promising target for achieving clinical benefits. J Biomed Sci. 2024; 31: 23.

[385]

Al-Khafaji H, Noer PR, Alkharobi H, et al. A characteristic signature of insulin-like growth factor (IGF) axis expression during osteogenic differentiation of human dental pulp cells (hDPCs): potential co-ordinated regulation of IGF action. Growth Horm IGF Res. 2018; 42-43: 14-21.

[386]

Mohrin M, Liu J, Zavala-Solorio J, et al. Inhibition of longevity regulator PAPP-A modulates tissue homeostasis via restraint of mesenchymal stromal cells. Aging Cell. 2021; 20: e13313.

[387]

Zhang W, Chen E, Chen M, et al. IGFBP7 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via Wnt/beta-catenin signaling pathway. FASEB J. 2018; 32: 2280-2291.

[388]

Lu Z, Chiu J, Lee LR, et al. Reprogramming of human fibroblasts into osteoblasts by insulin-like growth factor-binding protein 7. Stem Cells Transl Med. 2020; 9: 403-415.

[389]

Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab. 2022; 34: 1914-1931.

[390]

Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010; 142: 309-319.

[391]

Wang T, Li Z, Zhao S, et al. Characterizing hedgehog pathway features in senescence associated osteoarthritis through integrative multi-omics and machine learning analysis. Front Genet. 2024; 15: 1255455.

[392]

Al-Azab M, Wang B, Elkhider A, et al. Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany NY). 2020; 12: 5693-5715.

[393]

Razzaque MS, Soegiarto DW, Chang D, Long F, Lanske B. Conditional deletion of Indian hedgehog from collagen type 2alpha1-expressing cells results in abnormal endochondral bone formation. J Pathol. 2005; 207: 453-461.

[394]

Kim WK, Meliton V, Bourquard N, Hahn TJ, Parhami F. Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J Cell Biochem. 2010; 111: 1199-1209.

[395]

Kuwahara ST, Liu S, Chareunsouk A, Serowoky M, Mariani FV. On the horizon: hedgehog signaling to heal broken bones. Bone Res. 2022; 10: 13.

[396]

Zhu Y, Zhang X, Gu R, et al. LAMA2 regulates the fate commitment of mesenchymal stem cells via hedgehog signaling. Stem Cell Res Ther. 2020; 11: 135.

[397]

Sun J, Shin DY, Eiseman M, et al. SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts. Nat Commun. 2021; 12: 4611.

[398]

Zhou H, Zhang L, Chen Y, Zhu CH, Chen FM, Li A. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif. 2022; 55: e13162.

[399]

Hong IS, Lee HY, Choi SW, et al. The effects of hedgehog on RNA binding protein Msi1 during the osteogenic differentiation of human cord blood-derived mesenchymal stem cells. Bone. 2013; 56: 416-425.

[400]

Smith AE, Sigurbjornsdottir ES, Steingrimsson E, Sigurbjornsdottir S. Hedgehog signalling in bone and osteoarthritis: the role of Smoothened and cholesterol. FEBS J. 2023; 290: 3059-3075.

[401]

Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): a redox target and modulator of cellular senescence and aging-related diseases. Redox Biol. 2024; 70: 103032.

[402]

Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal. 2024; 22: 285.

[403]

Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016; 530: 184-189.

[404]

Li J, Karim MA, Che H, Geng Q, Miao D. Deletion of p16 prevents estrogen deficiency-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence. Am J Transl Res. 2020; 12: 672-683.

[405]

Ding Q, Liu H, Liu L, et al. Deletion of p16 accelerates fracture healing in geriatric mice. Am J Transl Res. 2021; 13: 11107-11125.

[406]

Shomento SH, Wan C, Cao X, et al. Hypoxia-inducible factors 1alpha and 2alpha exert both distinct and overlapping functions in long bone development. J Cell Biochem. 2010; 109: 196-204.

[407]

Chen K, Zhao J, Qiu M, et al. Osteocytic HIF-1alpha pathway manipulates bone micro-structure and remodeling via regulating osteocyte terminal differentiation. Front Cell Dev Biol. 2021; 9: 721561.

[408]

Shao J, Liu S, Zhang M, et al. A dual role of HIF1alpha in regulating osteogenesis-angiogenesis coupling. Stem Cell Res Ther. 2022; 13: 59.

[409]

Lee SY, Park KH, Lee G, et al. Hypoxia-inducible factor-2alpha mediates senescence-associated intrinsic mechanisms of age-related bone loss. Exp Mol Med. 2021; 53: 591-604.

[410]

Lee SY, Park KH, Yu HG, et al. Controlling hypoxia-inducible factor-2alpha is critical for maintaining bone homeostasis in mice. Bone Res. 2019; 7: 14.

[411]

Merceron C, Ranganathan K, Wang E, et al. Hypoxia-inducible factor 2alpha is a negative regulator of osteoblastogenesis and bone mass accrual. Bone Res. 2019; 7: 7.

[412]

Duan C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol. 2016; 310: C260-269.

[413]

Ouyang L, Sun Y, Lv D, et al. miR-29cb2 promotes angiogenesis and osteogenesis by inhibiting HIF-3alpha in bone. iScience. 2022; 25: 103604.

[414]

Ngo V, Duennwald ML. Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants (Basel). 2022; 11: 2345.

[415]

Yoon DS, Choi Y, Lee JW. Cellular localization of NRF2 determines the self-renewal and osteogenic differentiation potential of human MSCs via the P53-SIRT1 axis. Cell Death Dis. 2016; 7: e2093.

[416]

Liu Y, Cai G, Chen P, Jiang T, Xia Z. UBE2E3 regulates cellular senescence and osteogenic differentiation of BMSCs during aging. PeerJ. 2021; 9: e12253.

[417]

Casati L, Pagani F, Limonta P, Vanetti C, Stancari G, Sibilia V. Beneficial effects of delta-tocotrienol against oxidative stress in osteoblastic cells: studies on the mechanisms of action. Eur J Nutr. 2020; 59: 1975-1987.

[418]

Zhao B, Peng Q, Poon EHL, et al. Leonurine promotes the osteoblast differentiation of rat BMSCs by activation of autophagy via the PI3K/Akt/mTOR pathway. Front Bioeng Biotechnol. 2021; 9: 615191.

[419]

Chien Y, Scuoppo C, Wang X, et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 2011; 25: 2125-2136.

[420]

Haga M, Okada M. Systems approaches to investigate the role of NF-kappaB signaling in aging. Biochem J. 2022; 479: 161-183.

[421]

Liu P, Zhang Z, Li Y. Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease. Front Immunol. 2021; 12: 603416.

[422]

Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol. 2007; 19: 612-617.

[423]

Lehmann J, Narcisi R, Franceschini N, et al. WNT/beta-catenin signalling interrupts a senescence-induction cascade in human mesenchymal stem cells that restricts their expansion. Cell Mol Life Sci. 2022; 79: 82.

[424]

Cawthorn WP, Bree AJ, Yao Y, et al. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone. 2012; 50: 477-489.

[425]

Huang K, Cai S, Fu T, et al. Wnt10b regulates osteogenesis of adipose-derived stem cells through Wnt/beta-catenin signalling pathway in osteoporosis. Cell Prolif. 2024; 57: e13522.

[426]

Hu L, Chen W, Qian A, Li YP. Wnt/beta-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024; 12: 39.

[427]

Gao Y, Chen N, Fu Z, Zhang Q. Progress of Wnt signaling pathway in osteoporosis. Biomolecules. 2023; 13: 483.

[428]

Schonitzer V, Wirtz R, Ulrich V, et al. Sox2 is a potent inhibitor of osteogenic and adipogenic differentiation in human mesenchymal stem cells. Cell Reprogram. 2014; 16: 355-365.

[429]

Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014; 159: 709-713.

[430]

Gladyshev VN. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell. 2016; 15: 594-602.

[431]

Rachakatla A, Kalashikam RR. Calorie restriction-regulated molecular pathways and its impact on various age groups: an overview. DNA Cell Biol. 2022; 41: 459-468.

[432]

Park JW, Jeong J, Bae YS. Protein kinase CK2 is upregulated by calorie restriction and induces autophagy. Mol Cells. 2022; 45: 112-121.

[433]

Maharajan N, Vijayakumar K, Jang CH, Cho GW. Caloric restriction maintains stem cells through niche and regulates stem cell aging. J Mol Med (Berl). 2020; 98: 25-37.

[434]

Spadaro O, Youm Y, Shchukina I, et al. Caloric restriction in humans reveals immunometabolic regulators of health span. Science. 2022; 375: 671-677.

[435]

Hu J, Li Y, Wang Z, et al. Association of plant-based dietary patterns with the risk of osteoporosis in community-dwelling adults over 60 years: a cross-sectional study. Osteoporos Int. 2023; 34: 915-923.

[436]

Benetou V, Orfanos P, Feskanich D, et al. Mediterranean diet and hip fracture incidence among older adults: the CHANCES project. Osteoporos Int. 2018; 29: 1591-1599.

[437]

Melguizo-Rodriguez L, Manzano-Moreno FJ, Illescas-Montes R, et al. Bone protective effect of extra-virgin olive oil phenolic compounds by modulating osteoblast gene expression. Nutrients. 2019; 11: 1722.

[438]

Al-Bashaireh AM, Haddad LG, Weaver M, Chengguo X, Kelly DL, Yoon S. The effect of tobacco smoking on bone mass: an overview of pathophysiologic mechanisms. J Osteoporos. 2018; 2018: 1206235.

[439]

Lu Y, Di YP, Chang M, et al. Cigarette smoke-associated inflammation impairs bone remodeling through NFkappaB activation. J Transl Med. 2021; 19: 163.

[440]

Xie G, Huang C, Jiang S, et al. Smoking and osteoimmunology: understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat. 2024; 46: 33-45.

[441]

Haber PS, Kortt NC. Alcohol use disorder and the gut. Addiction. 2021; 116: 658-667.

[442]

Shigehara K, Izumi K, Kadono Y, Mizokami A. Testosterone and bone health in men: a narrative review. J Clin Med. 2021; 10: 530.

[443]

Li Y, Wang Y, Guo Y, et al. OPG and RANKL polymorphisms are associated with alcohol-induced osteonecrosis of the femoral head in the north area of China population in men. Medicine (Baltimore). 2016; 95: e3981.

[444]

Bhatia AP, Rupamalini SN, Sathi KV, et al. Impact of the habit of alcohol consumption on the success of the implants: a retrospective study. J Pharm Bioallied Sci. 2024; 16: S146-S148.

[445]

Guo M, Huang YL, Wu Q, et al. Chronic ethanol consumption induces osteopenia via activation of osteoblast necroptosis. Oxid Med Cell Longev. 2021; 2021: 3027954.

[446]

Cardoso de Sousa M, Vegian M, Biserra MA, et al. Influence of chronic alcohol use on osteoblastic differentiation of bone marrow cells, bone properties, and hepatic and renal morphology of rats. ScientificWorldJournal. 2018; 2018: 2494918.

[447]

Syed Hashim SA, Naina Mohamed I, Mohamed N. The effects of acute and chronic alcohol administration and withdrawal on bone microstructure, mechanical strength, and remodeling protein expression and their relation to an antioxidant and FGF23 in vivo. Biomedicines. 2024; 12: 1515.

[448]

Kirk B, Lombardi G, Duque G. Bone and muscle crosstalk in ageing and disease. Nat Rev Endocrinol. 2025; 21(6): 375-390.

[449]

Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal stem cell differentiation. J Anat. 2015; 227: 717-731.

[450]

Zhang Y, Feng X, Zheng B, Liu Y. Regulation and mechanistic insights into tensile strain in mesenchymal stem cell osteogenic differentiation. Bone. 2024; 187: 117197.

[451]

Welc SS, Brotto M, White KE, Bonewald LF. Aging: a struggle for beneficial to overcome negative factors made by muscle and bone. Mech Ageing Dev. 2025; 224: 112039.

[452]

Carapeto PV, Aguayo-Mazzucato C. Effects of exercise on cellular and tissue aging. Aging (Albany NY). 2021; 13: 14522-14543.

[453]

Nakajima K, Takeoka M, Mori M, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010; 31: 671-675.

[454]

Bu S, Chen Y, Wang S, Zhang F, Ji G. Treadmill training regulates beta-catenin signaling through phosphorylation of GSK-3beta in lumbar vertebrae of ovariectomized rats. Eur J Appl Physiol. 2012; 112: 3295-3304.

[455]

Liu L, Rosen CJ. New insights into calorie restriction induced bone loss. Endocrinol Metab (Seoul). 2023; 38: 203-213.

[456]

Wherry SJ, 2024. Exercise Mode and Bone. https://clinicaltrials.gov/study/NCT04815824

[457]

Tong B, Liao Z, Liu H, et al. Augmenting intracellular cargo delivery of extracellular vesicles in hypoxic tissues through inhibiting hypoxia-induced endocytic recycling. ACS Nano. 2023; 17: 2537-2553.

[458]

Liao Z, Liu H, Ma L, et al. Engineering extracellular vesicles restore the impaired cellular uptake and attenuate intervertebral disc degeneration. ACS Nano. 2021; 15: 14709-14724.

[459]

Chen C, Wang D, Moshaverinia A, et al. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res. 2017; 27: 559-577.

[460]

Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and molecular mechanisms of extracellular vesicles derived from mesenchymal stem cells in osteoporosis. Curr Issues Mol Biol. 2022; 44: 6346-6367.

[461]

Meng F, Wang G, Zhou F, et al. Exosomes from young plasma alleviate osteoporosis through miR-217-5p-regulated osteogenesis of bone marrow mesenchymal stem cell. Composites Part B: Engineering. 2024; 276: 111358.

[462]

Han P, Raveendran N, Liu C, et al. 3D bioprinted small extracellular vesicles from periodontal cells enhance mesenchymal stromal cell function. Biomater Adv. 2024; 158: 213770.

[463]

Wei Y, Ma H, Zhou H, et al. miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/beta-catenin axis. Aging (Albany NY). 2021; 13: 17190-17201.

[464]

He Y, Chen Y. The potential of exosomes for osteoporosis treatment: a review. Drug Des Devel Ther. 2024; 18: 979-989.

[465]

Chen K, Jiao Y, Liu L, et al. Communications between bone marrow macrophages and bone cells in bone remodeling. Front Cell Dev Biol. 2020; 8: 598263.

[466]

Fang F, Yang J, Wang J, et al. The role and applications of extracellular vesicles in osteoporosis. Bone Res. 2024; 12: 4.

[467]

Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016; 7: 10872.

[468]

Chen Y, Huang Y, Li J, Jiao T, Yang L. Enhancing osteoporosis treatment with engineered mesenchymal stem cell-derived extracellular vesicles: mechanisms and advances. Cell Death Dis. 2024; 15: 119.

[469]

Chen X, Luo Y, Zhu Q, et al. Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. Nat Aging. 2024; 4: 814-838.

[470]

Hamzah RN, Alghazali KM, Biris AS, Griffin RJ. Exosome traceability and cell source dependence on composition and cell-cell cross talk. Int J Mol Sci. 2021; 22: 5346.

[471]

Carney RP, Mizenko RR, Bozkurt BT, et al. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. Nat Nanotechnol. 2025; 20: 14-25.

[472]

Suresh PS, Zhang Q. Comprehensive comparison of methods for isolation of extracellular vesicles from human plasma. J Proteome Res. 2025; 24: 2956-2967.

[473]

Lee JC, Ray RM, Scott TA. Prospects and challenges of tissue-derived extracellular vesicles. Mol Ther. 2024; 32: 2950-2978.

[474]

Xiong H, Qiu H, Wang C, et al. Melatonin-loaded bioactive microspheres accelerate aged bone regeneration by formation of tunneling nanotubes to enhance mitochondrial transfer. Mater Today Bio. 2024; 28: 101175.

[475]

Nuerlan G, Yu M, Wang X, et al. Mitochondria replenishment enhances senescent periodontal ligament stem cell osteogenesis and facilitates bone repair. Nano Research. 2025; 18: 94907375.

[476]

Yucel AD, Gladyshev VN. The long and winding road of reprogramming-induced rejuvenation. Nat Commun. 2024; 15: 1941.

[477]

Yang JH, Petty CA, Dixon-McDougall T, et al. Chemically induced reprogramming to reverse cellular aging. Aging (Albany NY). 2023; 15: 5966-5989.

[478]

Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018; 24: 1246-1256.

[479]

Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014; 344: 630-634.

[480]

Villeda SA, Plambeck KE, Middeldorp J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014; 20: 659-663.

[481]

Sidik SM. Older mouse brains rejuvenated by protein found in young blood. Nature. 2023; 620: 709.

[482]

Horvath S, Singh K, Raj K, et al. Reversal of biological age in multiple rat organs by young porcine plasma fraction. bioRxiv. 2023.

[483]

Torma F, Kerepesi C, Jokai M, et al. Alterations of the gut microbiome are associated with epigenetic age acceleration and physical fitness. Aging Cell. 2024; 23: e14101.

[484]

Yokomizo T, Oshima M, Iwama A. Epigenetics of hematopoietic stem cell aging. Curr Opin Hematol. 2024; 31: 207-216.

[485]

Bisht S, Mao Y, Easwaran H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr Opin Oncol. 2024; 36: 82-92.

[486]

Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017; 23: 1072-1079.

[487]

Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022; 28: 1556-1568.

[488]

Khosla S, Targeting Cellular Senescence With Senolytics to Improve Skeletal Health in Older Humans.

[489]

Islam MT, Tuday E, Allen S, et al. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell. 2023; 22: e13767.

[490]

Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020; 288: 518-536.

[491]

Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020; 583: 127-132.

[492]

He X, Hu W, Zhang Y, et al. Cellular senescence in skeletal disease: mechanisms and treatment. Cell Mol Biol Lett. 2023; 28: 88.

[493]

Doolittle ML, Monroe DG, Farr JN, Khosla S. The role of senolytics in osteoporosis and other skeletal pathologies. Mech Ageing Dev. 2021; 199: 111565.

[494]

Xie Y, Chen Z, Zhong Q, et al. M2 macrophages secrete CXCL13 to promote renal cell carcinoma migration, invasion, and EMT. Cancer Cell Int. 2021; 21: 677.

[495]

Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014; 31: 722-733.

[496]

Mosteiro L, Pantoja C, Alcazar N, et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science. 2016; 354(6315): aaf4445.

[497]

Anastasilakis AD, Tsourdi E. Tauhe story of sclerostin inhibition: the past, the present, and the future. Hormones (Athens). 2024; 24(1): 41-58.

[498]

Wei Y, Fu J, Wu W, Ma P, Ren L, Wu J. Estrogen prevents cellular senescence and bone loss through Usp10-dependent p53 degradation in osteocytes and osteoblasts: the role of estrogen in bone cell senescence. Cell Tissue Res. 2021; 386: 297-308.

[499]

Xu JZ, Zhou YM, Zhang LL, et al. BMP9 reduces age-related bone loss in mice by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. Cell Death Discov. 2022; 8: 254.

[500]

Bae WJ, Park JS, Kang SK, Kwon IK, Kim EC. Effects of melatonin and its underlying mechanism on ethanol-stimulated senescence and osteoclastic differentiation in human periodontal ligament cells and cementoblasts. Int J Mol Sci. 2018; 19: 1742.

[501]

Gong Z, Da W, Tian Y, et al. Exogenous melatonin prevents type 1 diabetes mellitus-induced bone loss, probably by inhibiting senescence. Osteoporos Int. 2022; 33: 453-466.

[502]

Wang Y, Chen Y, Xiao H, et al. METTL3-mediated m6A modification increases Hspa1a stability to inhibit osteoblast aging. Cell Death Discov. 2024; 10: 155.

[503]

Huang M, Xu S, Liu L, et al. m6A methylation regulates osteoblastic differentiation and bone remodeling. Front Cell Dev Biol. 2021; 9: 783322.

[504]

Kuang Y, Hu B, Feng G, et al. Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells. Biogerontology. 2020; 21: 13-27.

[505]

Yang K, Pei L, Zhou S, Tao L, Zhu Y. Metformin attenuates H(2)O(2)-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway. Exp Ther Med. 2021; 22: 1316.

[506]

Zhou R, Ma Y, Qiu S, Gong Z, Zhou X. Metformin promotes cell proliferation and osteogenesis under high glucose condition by regulating the ROS‑AKT‑mTOR axis. Mol Med Rep. 2020; 22: 3387-3395.

[507]

Yang X, Jiang T, Wang Y, Guo L. The role and mechanism of SIRT1 in resveratrol-regulated. Osteoblast Autophagy in Osteoporosis Rats Sci Rep. 2019; 9: 18424.

[508]

Constanze B, Popper B, Aggarwal BB, Shakibaei M. Evidence that TNF-beta suppresses osteoblast differentiation of mesenchymal stem cells and resveratrol reverses it through modulation of NF-kappaB, Sirt1 and Runx2. Cell Tissue Res. 2020; 381: 83-98.

[509]

Zhou T, Yan Y, Zhao C, Xu Y, Wang Q, Xu N. Resveratrol improves osteogenic differentiation of senescent bone mesenchymal stem cells through inhibiting endogenous reactive oxygen species production via AMPK activation. Redox Rep. 2019; 24: 62-69.

[510]

Peng H, Yang M, Guo Q, Su T, Xiao Y, Xia ZY. Dendrobium officinale polysaccharides regulate age-related lineage commitment between osteogenic and adipogenic differentiation. Cell Prolif. 2019; 52: e12624.

[511]

Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018; 36: 18-28.

[512]

Wang C, Blough E, Dai X, et al. Protective effects of cerium oxide nanoparticles on MC3T3-E1 osteoblastic cells exposed to X-ray irradiation. Cell Physiol Biochem. 2016; 38: 1510-1519.

[513]

Scaife PJ, Simpson A, Kurlak LO, et al. Increased placental cell senescence and oxidative stress in women with pre-eclampsia and normotensive post-term pregnancies. Int J Mol Sci. 2021; 22: 7295.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/