The coming of age of DNA-based catalysts for therapeutic applications

Robert Hesse , Christoph G. W. Gertzen , Jessica Felice Schmuck , Justin Darvin Böcker , Piyush Pandey , Tobias Behn , Christopher Ruth , Detlev Riesner , Stephanie Kath-Schorr , Philipp A. Lang , Holger Gohlke , Manuel Etzkorn

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70408

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70408 DOI: 10.1002/ctm2.70408
COMMENTARY

The coming of age of DNA-based catalysts for therapeutic applications

Author information +
History +
PDF

Keywords

DNA enzymes / DNAzyme / emerging therapeutic platform technology / gene-silencing / RNA-cleavage

Cite this article

Download citation ▾
Robert Hesse, Christoph G. W. Gertzen, Jessica Felice Schmuck, Justin Darvin Böcker, Piyush Pandey, Tobias Behn, Christopher Ruth, Detlev Riesner, Stephanie Kath-Schorr, Philipp A. Lang, Holger Gohlke, Manuel Etzkorn. The coming of age of DNA-based catalysts for therapeutic applications. Clinical and Translational Medicine, 2025, 15(7): e70408 DOI:10.1002/ctm2.70408

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol. 1994; 1: 223-229.

[2]

Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci. 1997; 94: 4262-4266.

[3]

Rabani M, Levin JZ, Fan L, et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol. 2011; 29: 436-442.

[4]

Borggräfe J, Victor J, Rosenbach H, et al. Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature. 2022; 601: 144-149.

[5]

Krug N, Hohlfeld JM, Kirsten A, et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. New Engl J Med. 2015; 372: 1987-1995.

[6]

Popp V, Gerlach K, Mott S, et al. Rectal delivery of a DNAzyme that specifically blocks the transcription factor GATA3 and reduces colitis in mice. Gastroenterology. 2017; 152: 176-192.

[7]

Cao Y, Yang L, Jiang W, et al. Therapeutic evaluation of epstein-barr virus-encoded latent membrane protein-1 targeted DNAzyme for treating of nasopharyngeal carcinomas. Mol Ther. 2014; 22: 371-377.

[8]

Cho E, Moloney FJ, Cai H, et al. Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma: a phase 1 first-in-human trial (DISCOVER). Lancet. 2013; 381: 1835-1843.

[9]

Zhang Z, Zhang S, Wang S. DNAzymes Dz13 target the c-jun possess antiviral activity against influenza A viruses. Microb Pathog. 2017; 103: 155-161.

[10]

Appaiahgari MB, Vrati S. DNAzyme-mediated inhibition of Japanese encephalitis virus replication in mouse brain. Mol Ther. 2007; 15: 1593-1599.

[11]

Potaczek DP, Unger SD, Zhang N, et al. Development and characterization of DNAzyme candidates demonstrating significant efficiency against human rhinoviruses. J Allergy Clin Immunol. 2019; 143: 1403-1415.

[12]

Xie Y, Zhao X, Jiang L, et al. Inhibition of respiratory syncytial virus in cultured cells by nucleocapsid gene targeted deoxyribozyme (DNAzyme). Antiviral Res. 2006; 71: 31-41.

[13]

Gerber PP, Donde MJ, Matheson NJ, Taylor AI. XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection. Nat Commun. 2022; 13: 6716.

[14]

Victor J, Steger G, Riesner D. Inability of DNAzymes to cleave RNA in vivo is due to limited Mg2+ concentration in cells. Eur Biophys J. 2018; 47: 333-343.

[15]

Silverman SK. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci. 2016; 41: 595-609.

[16]

Rosenbach H, Victor J, Etzkorn M, Steger G, Riesner D, Span I. Molecular features and metal ions that influence 10-23 DNAzyme activity. Molecules. 2020; 25: 3100.

[17]

Rosenbach H, Borggräfe J, Victor J, et al. Influence of monovalent metal ions on metal binding and catalytic activity of the 10-23 DNAzyme. Biol Chem. 2020; 402: 99-111.

[18]

Okumoto Y, Sugimoto N. Effects of metal ions and catalytic loop sequences on the complex formation of a deoxyribozyme and its RNA substrate. J Inorg Biochem. 2000; 82: 189-195.

[19]

Yan J, Ran M, Shen X, Zhang H. Therapeutic DNAzymes: from structure design to clinical applications. Adv Mater. 2023; 35: 2300374.

[20]

Nguyen K, Malik TN, Chaput JC. Chemical evolution of an autonomous DNAzyme with allele-specific gene silencing activity. Nat Commun. 2023; 14: 2413.

[21]

Dhuri K, Bechtold C, Quijano E, et al. Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med. 2020; 9: 2004.

[22]

Wang R, He W, Yi X, Wu Z, Chu X, Jiang J. Site-specific bioorthogonal activation of DNAzymes for on-demand gene therapy. J Am Chem Soc. 2023; 145: 17926-17935.

[23]

Wang Y, Nguyen K, Spitale RC, Chaput JC. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat Chem. 2021; 13: 319-326.

[24]

Taylor AI, Wan CJK, Donde MJ, Peak-Chew S, Holliger P. A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing. Nat Chem. 2022; 14: 1295-1305.

[25]

Nguyen K, Wang Y, England WE, Chaput JC, Spitale RC. Allele-specific RNA knockdown with a biologically stable and catalytically efficient XNAzyme. J Am Chem Soc. 2021; 143: 4519-4523.

[26]

Gerber PP, Donde MJ, Matheson NJ, Taylor AI. XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection. Nat Commun. 2022; 13: 6716.

[27]

Freund N, Taylor AI, Arangundy-Franklin S, et al. A two-residue nascent-strand steric gate controls synthesis of 2′-O-methyl- and 2′-O-(2-methoxyethyl)-RNA. Nat Chem. 2023; 15: 91-100.

[28]

Borggräfe J, Gertzen CGW, Viegas A, Gohlke H, Etzkorn M. The architecture of the 10-23 DNAzyme and its implications for DNA-mediated catalysis. FEBS J. 2023; 290: 2011-2021.

[29]

Wieruszewska J, Pawłowicz A, Połomska E, Pasternak K, Gdaniec Z, Andrałojć W. The 8-17 DNAzyme can operate in a single active structure regardless of metal ion cofactor. Nat Commun. 2024; 15: 4218.

[30]

Huang PJ, Liu J. In vitro selection of chemically modified DNAzymes. Chem Open. 2020; 9: 1046-1059.

[31]

Liu H, Yu X, Chen Y, et al. Crystal structure of an RNA-cleaving DNAzyme. Nat Commun. 2017; 8: 2006.

[32]

Sednev MV, Liaqat A, Höbartner C. High-throughput activity profiling of RNA-cleaving DNA catalysts by deoxyribozyme sequencing (DZ-seq). J Am Chem Soc. 2022; 144: 2090-2094.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/