Cancer stem cells: Bridging microenvironmental interactions and clinical therapy

Huiling Wang , Junshu Li , Fei Du , Hongxin Deng

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70406

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70406 DOI: 10.1002/ctm2.70406
REVIEW

Cancer stem cells: Bridging microenvironmental interactions and clinical therapy

Author information +
History +
PDF

Abstract

Cancer stem cells (CSCs) are a core subpopulation of tumour tissues exhibiting stem cell properties. Although they constitute only a minority of tumour cells, CSCs have become a central force driving tumourigenesis, metastasis, recurrence and resistance to therapy, owing to their abilities for self-renewal, multi-lineage differentiation and tumour-initiating ability. Recent advances in multi-omics analysis, lineage tracing and single-cell sequencing technologies have systematically elucidated the dynamic biology of CSCs, including their epigenetic plasticity, metabolic adaptations and phenotypic heterogeneity, which depend on their ecological niche. In this review, we summarise the biological properties of CSCs, the molecular regulatory mechanisms and the complex interactions with the tumour microenvironment. We focus on strategies to target CSCs and the clinical translational challenges associated with these approaches. Collectively, this review organically integrates basic mechanisms and clinical translational research on CSCs, offering a comprehensive framework for understanding tumour biology and developing precision therapeutic strategies.

Keywords

cancer stem cells / immune escape / therapeutic resistance / tumour microenvironment

Cite this article

Download citation ▾
Huiling Wang, Junshu Li, Fei Du, Hongxin Deng. Cancer stem cells: Bridging microenvironmental interactions and clinical therapy. Clinical and Translational Medicine, 2025, 15(7): e70406 DOI:10.1002/ctm2.70406

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022; 12(1): 31-46.

[2]

Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025; 75(1): 10-45.

[3]

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997; 3(7): 730-737.

[4]

Perez-Gonzalez A, Bevant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nat Cancer. 2023; 4(8): 1063-1082.

[5]

Fanelli GN, Naccarato AG, Scatena C. Recent advances in cancer plasticity: cellular mechanisms, surveillance strategies, and therapeutic optimization. Front Oncol. 2020; 10: 569.

[6]

Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014; 14(3): 275-291.

[7]

Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B. 2021; 11(1): 55-70.

[8]

Sarkar H, Lee E, Lopez-Darwin SL, Kang Y. Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges. Genes Dev. 2025; 39(1-2): 64-85.

[9]

Glinsky GV. Stemness‘’ genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol. 2008; 26(17): 2846-2853.

[10]

Chu X, Tian W, Ning J, et al. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther. 2024; 9(1): 170.

[11]

de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023; 41(3): 374-403.

[12]

Nusblat LM, Carroll MJ, Roth CM. Crosstalk between M2 macrophages and glioma stem cells. Cell Oncol (Dordr). 2017; 40(5): 471-482.

[13]

Zhang C, Du Z, Gao Y, et al. Methionine secreted by tumor-associated pericytes supports cancer stem cells in clear cell renal carcinoma. Cell Metab. 2024; 36(4): 778-792. e10.

[14]

Erickson HL, Taniguchi S, Raman A, Leitenberger JJ, Malhotra SV, Oshimori N. Cancer stem cells release interleukin-33 within large oncosomes to promote immunosuppressive differentiation of macrophage precursors. Immunity. 2024; 57(8): 1908-1922. e6.

[15]

Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med. 2023; 21(1): 686.

[16]

Sun S, Yang Q, Jiang D, Zhang Y. Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment. J Nanobiotechnol. 2024; 22(1): 176.

[17]

Yi W, Zhang J, Huang Y, et al. Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells. Leukemia. 2024; 38(5): 1003-1018.

[18]

McCulloch EA, Till JE. Blast cells in acute myeloblastic leukemia: a model. Blood Cells. 1981; 7(1): 63-77.

[19]

Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma stem cells: novel data obtained by single-cell sequencing. Int J Mol Sci. 2022; 23(22): 14224.

[20]

Shimokawa M, Ohta Y, Nishikori S, et al. Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature. 2017; 545(7653): 187-192.

[21]

Sottoriva A, Verhoeff JJ, Borovski T, et al. Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res. 2010; 70(1): 46-56.

[22]

Prager BC, Xie Q, Bao S, Rich JN. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell. 2019; 24(1): 41-53.

[23]

Jiang L, Hao Y, Shao C, et al. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J Clin Invest. 2022; 132(6): e143397.

[24]

Luo J, Gong L, Yang Y, et al. Enhanced mitophagy driven by ADAR1-GLI1 editing supports the self-renewal of cancer stem cells in HCC. Hepatology. 2024; 79(1): 61-78.

[25]

Cui J, Christin JR, Reisz JA, et al. Targeting ABCA12-controlled ceramide homeostasis inhibits breast cancer stem cell function and chemoresistance. Sci Adv. 2023; 9(48): eadh1891.

[26]

Ravindran Menon D, Luo Y, Arcaroli JJ, et al. CDK1 interacts with Sox2 and promotes tumor initiation in human melanoma. Cancer Res. 2018; 78(23): 6561-6574.

[27]

Li M, Zhong Y, Wang M. Fat1 suppresses the tumor-initiating ability of nonsmall cell lung cancer cells by promoting Yes-associated protein 1 nuclear-cytoplasmic translocation. Environ Toxicol. 2021; 36(11): 2333-2341.

[28]

Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007; 449(7165): 1003-1007.

[29]

Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell. 2014; 54(5): 716-727.

[30]

Nowell PC. The clonal evolution of tumor cell populations. Science. 1976; 194(4260): 23-28.

[31]

Teixeira MR, Heim S. Cytogenetic analysis of tumor clonality. Adv Cancer Res. 2011; 112: 127-149.

[32]

Snippert HJ, van der Flier LG, Sato T, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010; 143(1): 134-144.

[33]

Lopez-Garcia C, Klein AM, Simons BD, Winton DJ. Intestinal stem cell replacement follows a pattern of neutral drift. Science. 2010; 330(6005): 822-825.

[34]

Leushacke M, Ng A, Galle J, Loeffler M, Barker N. Lgr5(+) gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus. Cell Rep. 2013; 5(2): 349-356.

[35]

Doupe DP, Klein AM, Simons BD, Jones PH. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev Cell. 2010; 18(2): 317-323.

[36]

Xue M, Dong L, Zhang H, et al. METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation. J Hematol Oncol. 2024; 17(1): 7.

[37]

Han L, Dong L, Leung K, et al. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell. 2023; 30(1): 52-68. e13.

[38]

Wang X, Chen Y, Wang X, et al. Stem cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11. Cancer Res. 2021; 81(20): 5217-5229.

[39]

Marjanovic ND, Weinberg RA, Chaffer CL. Cell plasticity and heterogeneity in cancer. Clin Chem. 2013; 59(1): 168-179.

[40]

Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells. 2015; 7(1): 27-36.

[41]

Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012; 31(1-2): 195-208.

[42]

Chan JM, Zaidi S, Love JR, et al. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science. 2022; 377(6611): 1180-1191.

[43]

Mauri F, Schepkens C, Lapouge G, et al. NR2F2 controls malignant squamous cell carcinoma state by promoting stemness and invasion and repressing differentiation. Nat Cancer. 2021; 2(11): 1152-1169.

[44]

Zhao R, Guo X, Zhang G, et al. CMYC-initiated HNF1A-AS1 overexpression maintains the stemness of gastric cancer cells. Cell Death Dis. 2024; 15(4): 288.

[45]

Shahzad U, Nikolopoulos M, Li C, et al. CASCADES, a novel SOX2 super-enhancer-associated long noncoding RNA, regulates cancer stem cell specification and differentiation in glioblastoma. Mol Oncol. 2025; 19(3): 764-784.

[46]

Chen Z, He Q, Lu T, et al. mcPGK1-dependent mitochondrial import of PGK1 promotes metabolic reprogramming and self-renewal of liver TICs. Nat Commun. 2023; 14(1): 1121.

[47]

Saw PE, Liu Q, Wong PP, Song E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell. 2024; 31(8): 1101-1112.

[48]

Li H, Li X, Liu S, et al. Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology. 2017; 66(6): 1920-1933.

[49]

Wang X, Yang X, Zhang C, et al. Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy. Proc Natl Acad Sci U S A. 2020; 117(12): 6640-6650.

[50]

Sun H, Yao N, Cheng S, et al. Cancer stem-like cells directly participate in vasculogenic mimicry channels in triple-negative breast cancer. Cancer Biol Med. 2019; 16(2): 299-311.

[51]

Ricci-Vitiani L, Pallini R, Biffoni M, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010; 468(7325): 824-828.

[52]

Wilkinson AL, Zorzan I, Rugg-Gunn PJ. Epigenetic regulation of early human embryo development. Cell Stem Cell. 2023; 30(12): 1569-1584.

[53]

Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell. 2024; 31(5): 617-639.

[54]

Gupta PB, Fillmore CM, Jiang G, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011; 146(4): 633-644.

[55]

de Sousa e Melo F, Kurtova AV, Harnoss JM, et al. A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature. 2017; 543(7647): 676-680.

[56]

Chen J, Li Y, Yu TS, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012; 488(7412): 522-526.

[57]

Suva ML, Rheinbay E, Gillespie SM, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014; 157(3): 580-594.

[58]

Ohta Y, Fujii M, Takahashi S, et al. Cell-matrix interface regulates dormancy in human colon cancer stem cells. Nature. 2022; 608(7924): 784-794.

[59]

Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010; 86(17-18): 631-637.

[60]

Wang Z, Yip LY, Lee JHJ, et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat Med. 2019; 25(5): 825-837.

[61]

Kozono D, Li J, Nitta M, et al. Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression. Proc Natl Acad Sci U S A. 2015; 112(30): E4055-64.

[62]

Xu C, Jin G, Wu H, et al. SIRPgamma-expressing cancer stem-like cells promote immune escape of lung cancer via Hippo signaling. J Clin Invest. 2022; 132(5): e141797.

[63]

Pérez-Núñez I, Rozalen C, Palomeque , et al. LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer. Nat Cancer. 2022; 3(3): 355-370.

[64]

Miao Y, Yang H, Levorse J, et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell. 2019; 177(5): 1172-1186. e14.

[65]

Wang G, Lu X, Dey P, et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 2016; 6(1): 80-95.

[66]

Bo Y, Zhou J, Cai K, et al. Leveraging intracellular ALDH1A1 activity for selective cancer stem-like cell labeling and targeted treatment via in vivo click reaction. Proc Natl Acad Sci U S A. 2023; 120(36): e2302342120.

[67]

Zhai Y, Li G, Pan C, et al. The development and potent antitumor efficacy of CD44/CD133 dual-targeting IL7Ralpha-armored CAR-T cells against glioblastoma. Cancer Lett. 2025; 614: 217541.

[68]

Sloan AR, Thapliyal M, Lathia JD. New T-cell therapies for brain metastasis, CD133 in the driver's seat. Clin Cancer Res. 2024; 30(3): 477-479.

[69]

Yang C, You J, Pan Q, et al. Targeted delivery of a PD-1-blocking scFv by CD133-specific CAR-T cells using nonviral sleeping beauty transposition shows enhanced antitumour efficacy for advanced hepatocellular carcinoma. BMC Med. 2023; 21(1): 327.

[70]

Ouhtit A, Rizeq B, Saleh HA, Rahman MM, Zayed H. Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int J Biol Sci. 2018; 14(13): 1782-1790.

[71]

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003; 100(7): 3983-3988.

[72]

Liu X, Ye Y, Zhu L, et al. Niche stiffness sustains cancer stemness via TAZ and NANOG phase separation. Nat Commun. 2023; 14(1): 238.

[73]

Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell. 2014; 15(6): 692-705.

[74]

Huang Q, Liu L, Xiao D, et al. CD44+ lung cancer stem cell-derived pericyte-like cells cause brain metastases through GPR124-enhanced trans-endothelial migration. Cancer Cell. 2023; 41(9): 1621-1636. e8.

[75]

Wang X, Cai J, Zhao L, et al. NUMB suppression by miR-9-5P enhances CD44+ prostate cancer stem cell growth and metastasis. Sci Rep. 2021; 11(1): 11210.

[76]

Praharaj PP, Singh A, Patra S, Bhutia SK. Co-targeting autophagy and NRF2 signaling triggers mitochondrial superoxide to sensitize oral cancer stem cells for cisplatin-induced apoptosis. Free Radic Biol Med. 2023; 207: 72-88.

[77]

Dall'antonia F, Pavkov-Keller T, Zangger K, Keller W. Structure of allergens and structure based epitope predictions. Methods. 2014; 66(1): 3-21.

[78]

Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020; 5(1): 8.

[79]

Pang L, Dunterman M, Guo S, et al. Kunitz-type protease inhibitor TFPI2 remodels stemness and immunosuppressive tumor microenvironment in glioblastoma. Nat Immunol. 2023; 24(10): 1654-1670.

[80]

Zhou L, Yu KH, Wong TL, et al. Lineage tracing and single-cell analysis reveal proliferative Prom1+ tumour-propagating cells and their dynamic cellular transition during liver cancer progression. Gut. 2022; 71(8): 1656-1668.

[81]

Wang R, Li Y, Tsung A, et al. iNOS promotes CD24(+)CD133(+) liver cancer stem cell phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc Natl Acad Sci U S A. 2018; 115(43): E10127-E10136.

[82]

Rodrigues A, Silva SLR, Dias I, et al. Piplartine eliminates CD34 + AML stem/progenitor cells by inducing oxidative stress and suppressing NF-kappaB signalling. Cell Death Discov. 2024; 10(1): 147.

[83]

Kuepper MK, Butow M, Herrmann O, et al. Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling. Leukemia. 2019; 33(8): 1964-1977.

[84]

Debaugnies M, Rodriguez-Acebes S, Blondeau J, et al. RHOJ controls EMT-associated resistance to chemotherapy. Nature. 2023; 616(7955): 168-175.

[85]

Ng KY, Shea QT, Wong TL, et al. Chemotherapy-enriched THBS2-deficient cancer stem cells drive hepatocarcinogenesis through matrix softness induced histone H3 modifications. Adv Sci (Weinh). 2021; 8(5): 2002483.

[86]

Park DJ, Sung PS, Kim J-H, et al. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1. J Immunother Cancer. 2020; 8(1): e000301.

[87]

Gomez-Gallegos AA, Ramirez-Vidal L, Becerril-Rico J, et al. CD24+CD44+CD54+EpCAM+ gastric cancer stem cells predict tumor progression and metastasis: clinical and experimental evidence. Stem Cell Res Ther. 2023; 14(1): 16.

[88]

Wang Z, Wang Q, Chen C, et al. NNMT enriches for AQP5(+) cancer stem cells to drive malignant progression in early gastric cardia adenocarcinoma. Gut. 2023; 73(1): 63-77.

[89]

Inukai M, Hara A, Yasui Y, Kumabe T, Matsumoto T, Saegusa M. Hypoxia-mediated cancer stem cells in pseudopalisades with activation of hypoxia-inducible factor-1alpha/Akt axis in glioblastoma. Hum Pathol. 2015; 46(10): 1496-1505.

[90]

Zhu Y, Huang S, Chen S, et al. SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by beta-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis. 2021; 12(5): 449.

[91]

Lu Y, Zhu Y, Deng S, et al. Targeting the sonic Hedgehog pathway to suppress the expression of the cancer stem cell (CSC)-related transcription factors and CSC-driven thyroid tumor growth. Cancers (Basel). 2021; 13(3): 418.

[92]

Huang C, Lu H, Li J, et al. SOX2 regulates radioresistance in cervical cancer via the Hedgehog signaling pathway. Gynecol Oncol. 2018; 151(3): 533-541.

[93]

Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev. 2021; 40(3): 691-720.

[94]

Woo SR, Lee HJ, Oh SJ, et al. Stabilization of HDAC1 via TCL1-pAKT-CHFR axis is a key element for NANOG-mediated multi-resistance and stem-like phenotype in immune-edited tumor cells. Biochem Biophys Res Commun. 2018; 503(3): 1812-1818.

[95]

Yang W, Kim D, Kim DK, Choi KU, Suh DS, Kim JH. Therapeutic strategies for targeting ovarian cancer stem cells. Int J Mol Sci. 2021; 22(10): 5059.

[96]

Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015; 2(2): 152-163.

[97]

Xu J, Li L, Shi P, Cui H, Yang L. The crucial roles of Bmi-1 in cancer: implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Int J Mol Sci. 2022; 23(15): 8231.

[98]

Nallasamy P, Nimmakayala RK, Parte S, Are AC, Batra SK, Ponnusamy MP. Tumor microenvironment enriches the stemness features: the architectural event of therapy resistance and metastasis. Mol Cancer. 2022; 21(1): 225.

[99]

Xu X, Zhou T, Wei X, Jiang X, Cao J. Application of mPEG-CS-cRGD/Bmi-1RNAi-PTX nanoparticles in suppression of laryngeal cancer by targeting cancer stem cells. Drug Deliv. 2023; 30(1): 2180112.

[100]

Sarkar P, Basu K, Sarkar P, et al. Correlations of aldehyde dehydrogenase-1 (ALDH1) expression with traditional prognostic parameters and different molecular subtypes of breast carcinoma. Clujul Med. 2018; 91(2): 181-187.

[101]

Liu C, Qiang J, Deng Q, et al. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 2021; 81(23): 5919-5934.

[102]

Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007; 104(24): 10158-10163.

[103]

Nieder J, Tomaschek F. Maltese as a merger of two worlds: a cross-language approach to phonotactic classification. PLoS ONE. 2023; 18(4): e0284534.

[104]

Roudi R, Korourian A, Shariftabrizi A, Madjd Z. Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes. Cancer Invest. 2015; 33(7): 294-302.

[105]

Wilson BJ, Saab KR, Ma J, et al. ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit. Cancer Res. 2014; 74(15): 4196-4207.

[106]

Lee CAA, Banerjee P, Wilson BJ, et al. Targeting the ABC transporter ABCB5 sensitizes glioblastoma to temozolomide-induced apoptosis through a cell-cycle checkpoint regulation mechanism. J Biol Chem. 2020; 295(22): 7774-7788.

[107]

Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009; 324(5933): 1457-1461.

[108]

Kukal S, Guin D, Rawat C, et al. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci. 2021; 78(21-22): 6887-6939.

[109]

Shen M, Xu Z, Xu W, et al. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J Exp Clin Cancer Res. 2019; 38(1): 149.

[110]

Alwosaibai K, Aalmri S, Mashhour M, et al. PD-L1 is highly expressed in ovarian cancer and associated with cancer stem cells populations expressing CD44 and other stem cell markers. BMC Cancer. 2023; 23(1): 13.

[111]

Zheng L, Lu J, Kong D, Zhan Y. Single-cell sequencing analysis revealed that WDR72 was a novel cancer stem cells related gene in gastric cancer. Heliyon. 2024; 10(15): e35549.

[112]

Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997; 94(10): 5320-5325.

[113]

Wang R, Chadalavada K, Wilshire J, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010; 468(7325): 829-833.

[114]

Walcher L, Kistenmacher AK, Suo H, et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020; 11: 1280.

[115]

Zhu Z, Mesci P, Bernatchez JA, et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin alpha(v)beta(5) axis. Cell Stem Cell. 2020; 26(2): 187-204. e10.

[116]

Najafzadeh B, Asadzadeh Z, Motafakker Azad R, et al. The oncogenic potential of NANOG: an important cancer induction mediator. J Cell Physiol. 2021; 236(4): 2443-2458.

[117]

Grubelnik G, Bostjancic E, Pavlic A, Kos M, Zidar N. NANOG expression in human development and cancerogenesis. Exp Biol Med (Maywood). 2020; 245(5): 456-464.

[118]

Charafe-Jauffret E, Ginestier C, Iovino F, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010; 16(1): 45-55.

[119]

Zanoni M, Bravaccini S, Fabbri F, Arienti C. Emerging roles of aldehyde dehydrogenase isoforms in anti-cancer therapy resistance. Front Med (Lausanne). 2022; 9: 795762.

[120]

Li T, Su Y, Mei Y, et al. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome. Lab Invest. 2010; 90(2): 234-244.

[121]

Duan JJ, Wang D, Cai J, et al. An aldehyde dehydrogenase 1A3 inhibitor attenuates the metastasis of human colorectal cancer. Cancer Lett. 2022; 536: 215662.

[122]

Tian S, Liu DH, Wang D, Ren F, Xia P. Aldehyde dehydrogenase 1 (ALDH1) promotes the toxicity of TRAIL in non-small cell lung cancer cells via post-transcriptional regulation of MEK-1 expression. Cell Physiol Biochem. 2018; 51(1): 217-227.

[123]

Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 1998; 58(23): 5337-5339.

[124]

Vahidian F, Duijf PHG, Safarzadeh E, Derakhshani A, Baghbanzadeh A, Baradaran B. Interactions between cancer stem cells, immune system and some environmental components: friends or foes?. Immunol Lett. 2019; 208: 19-29.

[125]

Aponte PM, Caicedo A. Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int. 2017; 2017: 5619472.

[126]

Brugnoli F, Grassilli S, Al-Qassab Y, Capitani S, Bertagnolo V. CD133 in breast cancer cells: more than a stem cell marker. J Oncol. 2019; 2019: 7512632.

[127]

Kozovska Z, Patsalias A, Bajzik V, et al. ALDH1A inhibition sensitizes colon cancer cells to chemotherapy. BMC Cancer. 2018; 18(1): 656.

[128]

Liu J, Xiao Q, Xiao J, et al. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022; 7(1): 3.

[129]

Song P, Gao Z, Bao Y, et al. Wnt/beta-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 2024; 17(1): 46.

[130]

Daniels DL, Weis WI. Beta-catenin directly displaces Groucho/TLE repressors from TCF/LEF in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005; 12(4): 364-371.

[131]

Ma ZQ, Feng YT, Guo K, et al. Melatonin inhibits ESCC tumor growth by mitigating the HDAC7/beta-catenin/c-Myc positive feedback loop and suppressing the USP10-maintained HDAC7 protein stability. Mil Med Res. 2022; 9(1): 54.

[132]

Yu J, Liu D, Sun X, et al. CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/beta-catenin signaling via transactivation of GSK-3beta and Axin2 expression. Cell Death Dis. 2019; 10(1): 26.

[133]

Chen Y, Zhao H, Liang W, et al. Autophagy regulates the cancer stem cell phenotype of head and neck squamous cell carcinoma through the noncanonical FOXO3/SOX2 axis. Oncogene. 2022; 41(5): 634-646.

[134]

Huang Y, Sheng H, Xiao Y, et al. Wnt/beta-catenin inhibitor ICG-001 enhances the antitumor efficacy of radiotherapy by increasing radiation-induced DNA damage and improving tumor immune microenvironment in hepatocellular carcinoma. Radiother Oncol. 2021; 162: 34-44.

[135]

Ji L, Qian W, Gui L, et al. Blockade of beta-catenin-induced CCL28 suppresses gastric cancer progression via inhibition of Treg cell infiltration. Cancer Res. 2020; 80(10): 2004-2016.

[136]

Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006; 7(9): 678-689.

[137]

Wang Y, Wang Y, Chen H, Liang Q. Endothelial cells promote formation of medulloblastoma stem-like cells via Notch pathway activation. J Mol Neurosci. 2017; 63(2): 152-158.

[138]

Choi S, Yu J, Park A, et al. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep. 2019; 9(1): 11724.

[139]

Pindiprolu S, Krishnamurthy PT, Dev C, Chintamaneni PK. DR5 antibody conjugated lipid-based nanocarriers of gamma-secretase inhibitor for the treatment of triple negative breast cancer. Chem Phys Lipids. 2021; 235: 105033.

[140]

Lopez-Guerra M, Xargay-Torrent S, Fuentes P, et al. Specific NOTCH1 antibody targets DLL4-induced proliferation, migration, and angiogenesis in NOTCH1-mutated CLL cells. Oncogene. 2020; 39(6): 1185-1197.

[141]

Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol. 2023; 24(9): 668-687.

[142]

Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996; 272(5268): 1668-1671.

[143]

Lee JJ, Perera RM, Wang H, et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A. 2014; 111(30): E3091-100.

[144]

Teglund S, Toftgard R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta. 2010; 1805(2): 181-208.

[145]

Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol. 2022; 85: 107-122.

[146]

Catenacci DV, Junttila MR, Karrison T, et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J Clin Oncol. 2015; 33(36): 4284-4292.

[147]

Steele NG, Biffi G, Kemp SB, et al. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer Res. 2021; 27(7): 2023-2037.

[148]

Wang Q, Liang N, Yang T, et al. DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J Hepatol. 2021; 75(5): 1142-1153.

[149]

Debeb BG, Lacerda L, Xu W, et al. Histone deacetylase inhibitors stimulate dedifferentiation of human breast cancer cells through WNT/beta-catenin signaling. Stem Cells. 2012; 30(11): 2366-2377.

[150]

Shamsian A, Sepand MR, Javaheri Kachousangi M, et al. Targeting tumorigenicity of breast cancer stem cells using SAHA/Wnt-b catenin antagonist loaded onto protein corona of gold nanoparticles. Int J Nanomed. 2020; 15: 4063-4078.

[151]

Lin Y, Jian Z, Jin H, et al. Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/beta-catenin pathway. Cell Death Dis. 2020; 11(1): 34.

[152]

Kaltschmidt C, Banz-Jansen C, Benhidjeb T, et al. A role for NF-kappaB in organ specific cancer and cancer stem cells. Cancers (Basel). 2019; 11(5): 655.

[153]

Kim DA, Choi HS, Ryu ES, et al. Tannic acid attenuates the formation of cancer stem cells by inhibiting NF-kappaB-mediated phenotype transition of breast cancer cells. Am J Cancer Res. 2019; 9(8): 1664-1681.

[154]

Kaltschmidt B, Witte KE, Greiner JFW, Weissinger F, Kaltschmidt C. Targeting NF-kappaB signaling in cancer stem cells: a narrative review. Biomedicines. 2022; 10(2): 261.

[155]

Liu Y, Qi X, Donnelly L, et al. Mechanisms and inhibition of porcupine-mediated Wnt acylation. Nature. 2022; 607(7920): 816-822.

[156]

Savona MR, Pollyea DA, Stock W, et al. Phase Ib study of Glasdegib, a Hedgehog pathway inhibitor, in combination with standard chemotherapy in patients with AML or high-risk MDS. Clin Cancer Res. 2018; 24(10): 2294-2303.

[157]

Huang T, Li F, Cheng X, et al. Wnt inhibition sensitizes PD-L1 blockade therapy by overcoming bone marrow-derived myofibroblasts-mediated immune resistance in tumors. Front Immunol. 2021; 12: 619209.

[158]

Chi SN, Yi JS, Williams PM, et al. Tazemetostat for tumors harboring SMARCB1/SMARCA4 or EZH2 alterations: results from NCI-COG pediatric MATCH APEC1621C. J Natl Cancer Inst. 2023; 115(11): 1355-1363.

[159]

Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer cell. 2023; 41(3): 404-420.

[160]

Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021; 221: 107753.

[161]

Bayik D, Lathia JD. Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer. 2021; 21(8): 526-536.

[162]

Osman A, Oze M, Afify SM, et al. Tumor-associated macrophages derived from cancer stem cells. Acta Histochem. 2020; 122(8): 151628.

[163]

Lo P-K, Zhang Y, Yao Y, et al. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFβ signaling. J Biol Chem. 2017; 292(27): 11466-11484.

[164]

Gudjonsson T, Rønnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002; 115(1): 39-50.

[165]

Afify SM, Hassan G, Zahra MH, et al. Cancer stem cells as the source of tumor associated myoepithelial cells in the tumor microenvironment developing ductal carcinoma in situ. Biomaterials. 2023; 301: 122249.

[166]

Coutry N, Nguyen J, Soualhi S, et al. Cross talk between Paneth and tuft cells drives dysbiosis and inflammation in the gut mucosa. Proc Natl Acad Sci. 2023; 120(25): e2219431120.

[167]

Liang X, Duronio GN, Yang Y, et al. An enhancer-driven stem cell-like program mediated by SOX9 blocks intestinal differentiation in colorectal cancer. Gastroenterology. 2022; 162(1): 209-222.

[168]

Sakahara M, Okamoto T, Srivastava U, et al. Paneth-like cells produced from OLFM4+ stem cells support OLFM4+ stem cell growth in advanced colorectal cancer. Commun Biol. 2024; 7(1): 27.

[169]

López-Arribillaga E, Yan B, Lobo-Jarne T, et al. Accumulation of paneth cells in early colorectal adenomas is associated with beta-catenin signaling and poor patient prognosis. Cells. 2021; 10(11): 2928.

[170]

Shin JH, Park J, Lim J, et al. Metastasis of colon cancer requires Dickkopf-2 to generate cancer cells with Paneth cell properties. Elife. 2024; 13: RP97279.

[171]

van Splunder H, Villacampa P, Martínez-Romero A, Graupera M. Pericytes in the disease spotlight. Trends Cell Biol. 2024; 34(1): 58-71.

[172]

Jiang Z, Zhou J, Li L, et al. Pericytes in the tumor microenvironment. Cancer Lett. 2023; 556: 216074.

[173]

Guo L, Yang Q, Wei R, et al. Enhanced pericyte-endothelial interactions through NO-boosted extracellular vesicles drive revascularization in a mouse model of ischemic injury. Nat Commun. 2023; 14(1): 7334.

[174]

Li X, Qi Q, Li Y, et al. TCAF2 in pericytes promotes colorectal cancer liver metastasis via inhibiting cold-sensing TRPM8 channel. Adv Sci. 2023; 10(30): 2302717.

[175]

Zhou W, Chen C, Shi Y, et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell. 2017; 21(5): 591-603. e4.

[176]

Li D, Wang L, Jiang B, Jing Y, Li X. Improving cancer immunotherapy by preventing cancer stem cell and immune cell linking in the tumor microenvironment. Biomed Pharmacother. 2024; 170: 116043.

[177]

Nian Z, Dou Y, Shen Y, et al. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity. 2024; 57(10): 2344-2361. e7.

[178]

Zhao R, Cao G, Zhang B, et al. TNF+ regulatory T cells regulate the stemness of gastric cancer cells through the IL13/STAT3 pathway. Front Oncol. 2023; 13: 1162938.

[179]

Chen X, Yang M, Yin J, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal. 2022; 20(1): 92.

[180]

Yang C-L, Song R, Hu J-W, et al. Integrating single-cell and bulk RNA sequencing reveals CK19+ cancer stem cells and their specific SPP1+ tumor-associated macrophage niche in HBV-related hepatocellular carcinoma. Hepatol Int. 2024; 18(1): 73-90.

[181]

Lemaitre L, Adeniji N, Suresh A, et al. Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease. Nat Cancer. 2024; 5(10): 1534-1556.

[182]

Zhang Y, Song Y, Wang X, et al. An NFAT1-C3a-C3aR positive feedback loop in tumor-associated macrophages promotes a glioma stem cell malignant phenotype. Cancer Immunol Res. 2024; 12(3): 363-376.

[183]

Wang L, Chao M, Han RR, et al. Single-cell map of diverse immune phenotypes in the metastatic brain tumor microenvironment of nonsmall-cell lung cancer. Int J Surg. 2025; 111(1): 1601-1606.

[184]

Komura N, Mabuchi S, Shimura K, et al. The role of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting PD-L1 expression in epithelial ovarian cancer. Cancer Immunol Immunother. 2020; 69: 2477-2499.

[185]

Liu C, Qiang J, Deng Q, et al. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 2021; 81(23): 5919-5934.

[186]

Otvos B, Silver DJ, Mulkearns-Hubert EE, et al. Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells. 2016; 34(8): 2026-2039.

[187]

Cao Y, Liu B, Cai L, et al. G9a promotes immune suppression by targeting the Fbxw7/Notch pathway in glioma stem cells. CNS Neurosci Ther. 2023; 29(9): 2508-2521.

[188]

Wang H, Zhou Q, Xie DF, Xu Q, Yang T, Wang W. LAPTM4B-mediated hepatocellular carcinoma stem cell proliferation and MDSC migration: implications for HCC progression and sensitivity to PD-L1 monoclonal antibody therapy. Cell Death Dis. 2024; 15(2): 165.

[189]

Zhang R, Dong M, Tu J, et al. PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway. Signal Transd Targeted Ther. 2023; 8(1): 97.

[190]

Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 2022; 22(10): 557-575.

[191]

Shanley M, Daher M, Dou J, et al. Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD. Cancer Cell. 2024; 42(8): 1450-1466. e11.

[192]

Shaim H, Shanley M, Basar R, et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest. 2021; 131(14): e142116.

[193]

Thacker G, Henry S, Nandi A, et al. Immature natural killer cells promote progression of triple-negative breast cancer. Sci Transl Med. 2023; 15(686): eabl4414.

[194]

Algar S, Vázquez-Villa H, Aguilar-Garrido P, et al. Cancer-stem-cell phenotype-guided discovery of a microbiota-inspired synthetic compound targeting NPM1 for leukemia. JACS Au. 2024; 4(5): 1786-1800.

[195]

Tintelnot J, Xu Y, Lesker TR, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature. 2023; 615(7950): 168-174.

[196]

Zhu Z, Huang J, Li X, et al. Gut microbiota regulate tumor metastasis via circRNA/miRNA networks. Gut Microbes. 2020; 12(1): 1788891.

[197]

Dalmasso G, Cougnoux A, Faïs T, et al. Colibactin-producing Escherichia coli enhance resistance to chemotherapeutic drugs by promoting epithelial to mesenchymal transition and cancer stem cell emergence. Gut Microbes. 2024; 16(1): 2310215.

[198]

Ma W, Zhang L, Chen W, et al. Microbiota enterotoxigenic Bacteroides fragilis-secreted BFT-1 promotes breast cancer cell stemness and chemoresistance through its functional receptor NOD1. Protein Cell. 2024; 15(6): 419-440.

[199]

He J, Hu W, Ouyang Q, et al. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett. 2022; 542: 215764.

[200]

Rodrigues G, Hoshino A, Kenific CM, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol. 2019; 21(11): 1403-1412.

[201]

Guo R, Han D, Song X, et al. Context-dependent regulation of Notch signaling in glial development and tumorigenesis. Sci Adv. 2023; 9(45): eadi2167.

[202]

Li H, Zhu J, Liu X, et al. Glioma stem cell-derived exosomes induce the transformation of astrocytes via the miR-3065-5p/DLG2 signaling axis. Glia. 2024; 72(5): 857-871.

[203]

Yoon SH, Lee S, Kim HS, et al. NSDHL contributes to breast cancer stem-like cell maintenance and tumor-initiating capacity through TGF-beta/Smad signaling pathway in MCF-7 tumor spheroid. BMC Cancer. 2024; 24(1): 1370.

[204]

Yan B, Jiang Z, Cheng L, et al. Paracrine HGF/c-MET enhances the stem cell-like potential and glycolysis of pancreatic cancer cells via activation of YAP/HIF-1alpha. Exp Cell Res. 2018; 371(1): 63-71.

[205]

Raj S, Kesari KK, Kumar A, et al. Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer. Mol Cancer. 2022; 21(1): 31.

[206]

Kroon P, Berry PA, Stower MJ, et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res. 2013; 73(16): 5288-5298.

[207]

Weng YS, Tseng HY, Chen YA, et al. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 2019; 18(1): 42.

[208]

Chen X, Yang M, Yin J, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/beta-catenin signaling. Cell Commun Signal. 2022; 20(1): 92.

[209]

Anderson NR, Sheth V, Li H, et al. Microenvironmental CXCL12 deletion enhances Flt3-ITD acute myeloid leukemia stem cell response to therapy by reducing p38 MAPK signaling. Leukemia. 2023; 37(3): 560-570.

[210]

Zhan Y, Zhou Z, Zhu Z, et al. Exosome-transmitted LUCAT1 promotes stemness transformation and chemoresistance in bladder cancer by binding to IGF2BP2. J Exp Clin Cancer Res. 2025; 44(1): 80.

[211]

Guo Y, Cui J, Liang X, Chen T, Lu C, Peng T. Pancreatic cancer stem cell-derived exosomal miR-210 mediates macrophage M2 polarization and promotes gemcitabine resistance by targeting FGFRL1. Int Immunopharmacol. 2024; 127: 111407.

[212]

Nallasamy P, Nimmakayala RK, Parte S, Are AC, Batra SK, Ponnusamy MP. Tumor microenvironment enriches the stemness features: the architectural event of therapy resistance and metastasis. Mol Cancer. 2022; 21(1): 225.

[213]

Chaudhary A, Raza SS, Haque R. Transcriptional factors targeting in cancer stem cells for tumor modulation. Semin Cancer Biol. 2023; 88: 123-137.

[214]

Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017; 14(10): 611-629.

[215]

Lee TK-W, Guan X-Y, Ma S. Cancer stem cells in hepatocellular carcinoma—from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022; 19(1): 26-44.

[216]

Petrosyan A, Villani V, Aguiari P, et al. Identification and characterization of the Wilms tumor cancer stem cell. Adv Sci. 2023; 10(20): 2206787.

[217]

Xu C, Zhang W, Liu C. FAK downregulation suppresses stem-like properties and migration of human colorectal cancer cells. PLoS ONE. 2023; 18(4): e0284871.

[218]

Li Z, Xu Z-M, Chen W-P, et al. Tumor-repopulating cells evade ferroptosis via PCK2-dependent phospholipid remodeling. Nat Chem Biol. 2024; 20(10): 1341-1352.

[219]

Kellaway SG, Potluri S, Keane P, et al. Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth. Nat Commun. 2024; 15(1): 1359.

[220]

Choudhury A, Cady MA, Lucas C-HG, et al. Perivascular NOTCH3+ stem cells drive meningioma tumorigenesis and resistance to radiotherapy. Cancer Discov. 2024; 14(10): 1823-1837.

[221]

Pang L, Dunterman M, Xuan W, et al. Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep. 2023; 42(2): 112127.

[222]

Song S, Wang L, Jiang X, et al. CircHULC accelerates the growth of human liver cancer stem cells by enhancing chromatin reprogramming and chromosomal instability via autophagy. Cell Signal. 2023; 109: 110772.

[223]

Auzmendi-Iriarte J, Matheu A. Intrinsic role of chaperone-mediated autophagy in cancer stem cell maintenance. Autophagy. 2022; 18(12): 3035-3036.

[224]

Sohn EJ, Kim JH, Oh S-O, Kim J-Y. Regulation of self-renewal in ovarian cancer stem cells by fructose via chaperone-mediated autophagy. Biochim Biophys Acta (BBA)-Mol Basis of Dis. 2023; 1869(6): 166723.

[225]

Yan L, Wu M, Wang T, et al. Breast cancer stem cells secrete mif to mediate tumor metabolic reprogramming that drives immune evasion. Cancer Res. 2024; 84(8): 1270-1285.

[226]

Wang S, Huang T, Wu Q, et al. Lactate reprograms glioblastoma immunity through CBX3-regulated histone lactylation. J Clin Invest. 2024; 134(22): e176851.

[227]

Lv D, Gimple RC, Zhong C, et al. PDGF signaling inhibits mitophagy in glioblastoma stem cells through N6-methyladenosine. Dev Cell. 2022; 57(12): 1466-1481. e6.

[228]

Alcalá S, Sancho P, Martinelli P, et al. ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity. Nat Commun. 2020; 11(1): 2682.

[229]

Fu L, Fan J, Maity S, McFadden G, Shi Y, Kong W. PD-L1 interacts with Frizzled 6 to activate β-catenin and form a positive feedback loop to promote cancer stem cell expansion. Oncogene. 2022; 41(8): 1100-1113.

[230]

Wei J-R, Zhang B, Zhang Y, et al. QSOX1 facilitates dormant esophageal cancer stem cells to evade immune elimination via PD-L1 upregulation and CD8 T cell exclusion. Proc Natl Acad Sci. 2024; 121(44): e2407506121.

[231]

Li J, Xia Q, Di C, et al. Tumor cell-intrinsic CD96 mediates chemoresistance and cancer stemness by regulating mitochondrial fatty acid β-oxidation. Adv Sci. 2023; 10(7): 2202956.

[232]

Perkins RS, Murray G, Suthon S, et al. WNT5B drives osteosarcoma stemness, chemoresistance and metastasis. Clin Transl Med. 2024; 14(5): e1670.

[233]

Wang Z, Wang Q, Chen C, et al. NNMT enriches for AQP5+ cancer stem cells to drive malignant progression in early gastric cardia adenocarcinoma. Gut. 2024; 73(1): 63-77.

[234]

Zhou L, Wen R, Bai C, et al. Spatial transcriptomic revealed intratumor heterogeneity and cancer stem cell enrichment in colorectal cancer metastasis. Cancer Lett. 2024; 602: 217181.

[235]

Peng F, Feng Y, Yu S, et al. Pan-cancer analysis of B3GNT5 with potential implications for cancer immunotherapy and cancer stem cell stemness. PLoS ONE. 2024; 19(12): e0314609.

[236]

Zhu M, Fan H, Deng J, et al. BMI1 silencing liposomes suppress postradiotherapy cancer stemness against radioresistant hepatocellular carcinoma. ACS Nano. 2023; 17(23): 23405-23421.

[237]

Hu Y, Zhang M, Yang T, et al. Sequential CD7 CAR T-cell therapy and allogeneic HSCT without GVHD prophylaxis. N Engl J Med. 2024; 390(16): 1467-1480.

[238]

Shi M, Wang J, Huang H, et al. Bispecific CAR T cell therapy targeting BCMA and CD19 in relapsed/refractory multiple myeloma: a phase I/II trial. Nat Commun. 2024; 15(1): 3371.

[239]

Kieliszek AM, Mobilio D, Upreti D, et al. Intratumoral delivery of chimeric antigen receptor T cells targeting CD133 effectively treats brain metastases. Clin Cancer Res. 2024; 30(3): 554-563.

[240]

Tan X-Y, Li Y-T, Li H-H, et al. WNT2-SOX4 positive feedback loop promotes chemoresistance and tumorigenesis by inducing stem-cell like properties in gastric cancer. Oncogene. 2023; 42(41): 3062-3074.

[241]

Paul S, Chatterjee S, Sinha S, et al. Veliparib (ABT-888), a PARP inhibitor potentiates the cytotoxic activity of 5-fluorouracil by inhibiting MMR pathway through deregulation of MSH6 in colorectal cancer stem cells. Expert Opin Ther Targets. 2023; 27(10): 999-1015.

[242]

Baek B-S, Park H, Choi J-W, Lee E-Y, Youn J-I, Seong S-Y. Dendritic cells pulsed with penetratin-OLFM4 inhibit the growth and metastasis of melanoma in mice. Biomed Pharmacother. 2024; 177: 117083.

[243]

Bergin CJ, Zouggar A, Mendes da Silva A, et al. The dopamine transporter antagonist vanoxerine inhibits G9a and suppresses cancer stem cell functions in colon tumors. Nat Cancer. 2024; 5(3): 463-480.

[244]

Beziaud L, Young CM, Alonso AM, Norkin M, Minafra AR, Huelsken J. IFNγ-induced stem-like state of cancer cells as a driver of metastatic progression following immunotherapy. Cell Stem Cell. 2023; 30(6): 818-831. e6.

[245]

Nahas GR, Sherman LS, Sinha G, et al. Increased expression of Musashi 1 on breast cancer cells has implication to understand dormancy and survival in bone marrow. Aging (Albany NY). 2023; 15(9): 3230.

[246]

Tichet M, Wullschleger S, Chryplewicz A, et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages. Immunity. 2023; 56(1): 162-179. e6.

[247]

Chakravarti M, Bera S, Dhar S, et al. Neem leaf glycoprotein disrupts exhausted CD8+ T-cell-mediated cancer stem cell aggression. Mol Cancer Res. 2024; 22(8): 759-778.

[248]

Zhu P, Lu T, Chen Z, et al. 5-Hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis. Neuron. 2022; 110(14): 2268-2282. e4.

[249]

Xie C, Liang C, Wang R, et al. Resveratrol suppresses lung cancer by targeting cancer stem-like cells and regulating tumor microenvironment. J Nutr Biochem. 2023; 112: 109211.

[250]

Choi Y, Lee HK, Ahn D, Nam M-W, Go R-E, Choi K-C. Genetically engineered neural stem cells expressing cytosine deaminase and interferon-beta enhanced T cell-mediated antitumor immunity against gastric cancer in a humanized mouse model. Life Sci. 2023; 328: 121866.

[251]

Crews LA, Ma W, Ladel L, et al. Reversal of malignant ADAR1 splice isoform switching with Rebecsinib. Cell Stem Cell. 2023; 30(3): 250-263. e6.

[252]

Ossami Saidy A, Peczynski C, Thieblemont C, et al. Efficacy and safety of CAR T-cell therapy in patients with primary or secondary CNS lymphoma: a study on behalf of the EBMT and the GoCART coalition. Hemasphere. 2025; 9(5): e70146.

[253]

Masoumi J, Jafarzadeh A, Abdolalizadeh J, et al. Cancer stem cell-targeted chimeric antigen receptor (CAR)-T cell therapy: challenges and prospects. Acta Pharm Sin B. 2021; 11(7): 1721-1739.

[254]

Lee E, Hong JJ, Samcam Vargas G, et al. CXCR4(+) mammary gland macrophageal niche promotes tumor initiating cell activity and immune suppression during tumorigenesis. Nat Commun. 2025; 16(1): 4854.

[255]

Miyaguchi K, Wang H, Black KL, Shiao SL, Wang R, Yu JS. Activated T cell therapy targeting glioblastoma cancer stem cells. Sci Rep. 2023; 13(1): 196.

[256]

Giron-Michel J, Padelli M, Oberlin E, Guenou H, Duclos-Vallee JC. State-of-the-art liver cancer organoids: modeling cancer stem cell heterogeneity for personalized treatment. BioDrugs. 2025; 39(2): 237-260.

[257]

Daniele S, Giacomelli C, Zappelli E, et al. Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death. Sci Rep. 2015; 5: 15556.

[258]

Zhang G, Zhang X, Pan W, et al. Dissecting the spatial and single-cell transcriptomic architecture of cancer stem cell niche driving tumor progression in gastric cancer. Adv Sci (Weinh). 2025; 12(18): e2413019.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/