PDK4 and nutrient responses explain muscle specific manifestation in mitochondrial disease

Swagat Pradhan , Takayuki Mito , Nahid A Khan , Sofiia Olander , Aleksandra Zhaivoron , Thomas G McWilliams , Anu Suomalainen

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70404

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70404 DOI: 10.1002/ctm2.70404
RESEARCH ARTICLE

PDK4 and nutrient responses explain muscle specific manifestation in mitochondrial disease

Author information +
History +
PDF

Abstract

Background: Mitochondria elicit various metabolic stress responses, the roles of which in diseases are poorly understood. Here, we explore how different muscles of one individual—extraocular muscles (EOMs) and quadriceps femoris (QFs) muscles—respond to mitochondrial disease. The aim is to explain why EOMs atrophy early in the disease, unlike other muscles.

Methods: We used a mouse model for mitochondrial myopathy (“deletor”), which manifests progressive respiratory chain deficiency and human disease hallmarks in itsmuscles. Analyses included histology, ultrastructure, bulk and single-nuclear RNA-sequencing, metabolomics, and mitochondrial turnover assessed through in vivo mitophagy using transgenic mito-QC marker mice crossed to deletors.

Results: In mitochondrial muscle disease, large QFs upregulate glucose uptake that drives anabolic glycolytic one-carbon metabolism and mitochondrial integrated stress response. EOMs, however, react in an opposite manner, inhibiting glucose and pyruvate oxidation by activating PDK4, a pyruvate dehydrogenase kinase and inhibitor. Instead, EOMs upregulate acetyl-CoA synthesis and fatty-acid oxidation pathways, and accumulate lipids. In QFs, Pdk4 transcription is not induced.- Amino acid levels are increased in QFs but are low in EOMs suggesting their catabolic use for energy metabolism. Mitophagy is stalled in both muscle types, in the most affected fibers.

Conclusions: Our evidence indicates that different muscles respond differently to mitochondrial disease even in one individual. While large muscles switch to anabolic mode and glycolysis, EOMs actively inhibit glucose usage. They upregulate lipid oxidation pathway, a non-optimal fuel choice in mitochondrial myopathy, leading to lipid accumulation and possibly increased reliance on amino acid oxidation. We propose that these consequences of non-optimal nutrient responses lead to EOMatrophy and progressive external ophthalmoplegia in patients. Our evidence highlights the importance of PDK4 and aberrant nutrient signaling underlying muscle atrophies.

Keywords

progressive external ophthalmoplegia / nutrient signaling / mitochondrial disease / integrated stress response / mitochondrial myopathy / pyruvate dehydrogenase kinase

Cite this article

Download citation ▾
Swagat Pradhan, Takayuki Mito, Nahid A Khan, Sofiia Olander, Aleksandra Zhaivoron, Thomas G McWilliams, Anu Suomalainen. PDK4 and nutrient responses explain muscle specific manifestation in mitochondrial disease. Clinical and Translational Medicine, 2025, 15(7): e70404 DOI:10.1002/ctm2.70404

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases. Nat Rev Dis Prim. 2016; 2(1): 16080.

[2]

Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell. 2024; 187(11): 2601-2627.

[3]

Goldstein A, Falk MJ. Single large-scale mitochondrial DNA deletion syndromes. 2003. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Dec 17 [Updated 2023 Sep 28].

[4]

Spelbrink JN, Li F-Y, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet. 2001; 28(3): 223-231.

[5]

Suomalainen A, Isohanni P. Mitochondrial DNA depletion syndromes—many genes, common mechanisms. Neuromuscul Disord. 2010; 20(7): 429-437.

[6]

Van Goethem G, Dermaut B, Löfgren A, et al. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet. 2001; 28(3): 211-212.

[7]

Tyynismaa H, Mjosund KP, Wanrooij S, et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A. 2005; 102(49): 17687-17692.

[8]

Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020; 31(6): 1078-1090.

[9]

Nikkanen J, Forsström S, Euro L, et al. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. Cell Metab. 2016; 23(4): 635-648.

[10]

Bao XR, Ong S, Goldberger O, et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife. 2016; 5: 1-24.

[11]

Forsström S, Jackson CB, Carroll CJ, et al. Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions. Cell Metab. 2019; 30(6): 1040-1054.e7.

[12]

Khan NA, Nikkanen J, Yatsuga S, et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 2017; 26(2): 419-428.

[13]

Kühl I, Miranda M, Atanassov I, et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. Elife. 2017; 6: 1-33.

[14]

Tyynismaa H, Carroll CJ, Raimundo N, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet. 2010; 19(20): 3948-3958.

[15]

Mito T, Vincent AE, Faitg J, et al. Mosaic dysfunction of mitophagy in mitochondrial muscle disease. Cell Metab. 2022; 34(2): 197-208.

[16]

McWilliams TG, Prescott AR, Allen GFG, et al. Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol. 2016; 214(3): 333-345.

[17]

Berg S, Kutra D, Kroeger T, et al. Ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 2019; 16(12): 1226-1232.

[18]

McQuin C, Goodman A, Chernyshev V, et al. CellProfiler 3.0: next-generation image processing for biology. PLOS Biol. 2018; 16(7): e2005970.

[19]

Ignatenko O, Malinen S, Rybas S, et al. Mitochondrial dysfunction compromises ciliary homeostasis in astrocytes. J Cell Biol. 2023; 222(1): e202203019.

[20]

Stuelsatz P, Yablonka-Reuveni Z. Isolation of mouse periocular tissue for histological and immunostaining analyses of the extraocular muscles and their satellite cells. Methods Mol Biol. 2016; 1460: 101-127.

[21]

Kang Y, Hepojoki J, Maldonado RS, et al. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature. 2024; 628(8009): 844-853.

[22]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 1-21.

[23]

Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-2504.

[24]

Janky R, Verfaillie A, Imrichová H, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol. 2014; 10(7): e1003731.

[25]

Santos MD, Gioftsidi S, Backer S, et al. Extraction and sequencing of single nuclei from murine skeletal muscles. STAR Protoc. 2021; 2(3): 100694.

[26]

Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017.

[27]

Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1): 15.

[28]

McInnes L, Healy J, Saul N, Großberger L. UMAP: uniform manifold approximation and projection. J Open Source Softw. 2018; 3(29): 861.

[29]

Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 2019; 9(1): 5233.

[30]

Petrany MJ, Swoboda CO, Sun C, et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun. 2020; 11(1): 6374.

[31]

Pang Z, Chong J, Zhou G, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021; 49(W1): W388-W396.

[32]

Sugden MC, Holness MJ. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem. 2006; 112(3): 139-149.

[33]

Benador IY, Veliova M, Mahdaviani K, et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 2018; 27(4): 869-885.

[34]

Suomalainen A, Majander A, Haltia M, et al. Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia. J Clin Invest. 1992; 90(1): 61-66.

[35]

Greaves LC, Yu-Wai-Man P, Blakely EL, et al. Mitochondrial DNA defects and selective extraocular muscle involvement in CPEO. Investig Ophthalmol Vis Sci. 2010; 51(7): 3340-3346.

[36]

Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003; 31(6): 1143-1151.

[37]

Pettersen IKN, Tusubira D, Ashrafi H, et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion. 2019; 49(July): 97-110.

[38]

Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013; 19(5): 557-566.

[39]

Sugden MC, Bulmer K, Gibbons GF, Holness MJ. Role of peroxisome proliferator-activated receptor-α in the mechanism underlying changes in renal pyruvate dehydrogenase kinase isoform 4 protein expression in starvation and after refeeding. Arch Biochem Biophys. 2001; 395(2): 246-252.

[40]

Ramaswamy G, Karim MA, Murti KG, Jackowski S. PPARα controls the intracellular coenzyme A concentration via regulation of PANK1α gene expression. J Lipid Res. 2004; 45(1): 17-31.

[41]

Wang S-J, Yu G, Jiang L, et al. p53-dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene. Cell Cycle. 2013; 12(5): 753-761.

[42]

Fillebeen C, Lam NH, Chow S, et al. Regulatory connections between iron and glucose metabolism. Int J Mol Sci. 2020; 21(20): 7773.

[43]

Oberhuber M, Pecoraro M, Rusz M, et al. STAT 3 -dependent analysis reveals PDK 4 as independent predictor of recurrence in prostate cancer. Mol Syst Biol. 2020; 16(4): 1-27.

[44]

Palamiuc L, Schlagowski A, Ngo ST, et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med. 2015; 7(5): 526-546.

[45]

Pin F, Novinger LJ, Huot JR, et al. PDK4 drives metabolic alterations and muscle atrophy in cancer cachexia. FASEB J. 2019; 33(6): 7778-7790.

[46]

Wu P, Peters JM, Harris RA. Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor α. Biochem Biophys Res Commun. 2001; 287(2): 391-396.

[47]

Jin SJ, Hoppel CL, Tserng KY. Incomplete fatty acid oxidation: the production and epimerization of 3-hydroxy fatty acids. J Biol Chem. 1992; 267(1): 119-125.

[48]

Golla S, Ren J, Malloy CR, Pascual JM. Intramyocellular lipid excess in the mitochondrial disorder MELAS. Neurol Genet. 2017; 3(3): 4-7.

[49]

Sharma R, Reinstadler B, Engelstad K, et al. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest. 2021; 131(2): e136055.

[50]

Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum Mol Genet. 2012; 21(3): 526-535.

[51]

De Stefano N, Matthews PM, Ford B, et al. Short-term dichloroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders. Neurology. 1995; 45(6): 1193-1198.

[52]

Mori M, Yamagata T, Goto T, et al. Dichloroacetate treatment for mitochondrial cytopathy: long-term effects in MELAS. Brain Dev. 2004; 26(7): 453-458.

[53]

Kaufmann P, Engelstad K, Wei Y, et al. Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology. 2006; 66(3): 324-330.

[54]

Chen H, Bian A, Yang L, et al. Targeting STAT3 by a small molecule suppresses pancreatic cancer progression. Oncogene. 2021; 40(8): 1440-1457.

[55]

Sud M, Fahy E, Cotter D, et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016; 44(D1): D463-D470.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/