Single nuclear-spatial transcriptomic sequencing reveals distinct puncture-induced cell subpopulations in the intervertebral disc of a rat model
Guoyan Liang , Jing Tan , Chong Chen , Yuying Liu , Yongyu Ye , Xiaolin Pan , Qiujian Zheng , Yunbing Chang , Feng-Juan Lyu
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (6) : e70370
Single nuclear-spatial transcriptomic sequencing reveals distinct puncture-induced cell subpopulations in the intervertebral disc of a rat model
Objective: We aim to investigate the spatiotemporal dynamics of intervertebral disc (IVD) cell subpopulations in IVD degeneration (IVDD).
Methods: To gain combined spatial and transcriptomic insights into IVDD, we employed both spatial transcriptomic sequencing (stRNA-seq) and single nucleus RNA sequencing (snRNA-seq) in a rat puncture-induced IVDD model. The findings were verified in rat and human IVD by immunostaining and qRT-PCR. Tamoxifen-administered PdgfraCreERT2;R26tdTomato mice were adopted to track platelet-derived growth factor receptor alpha (Pdgfra) positive cells.
Results: Puncture response regions were revealed on day 1 post-puncture, for which oxidative stress emerged as a prominent pathway in a Stress Zone consisting of lipocalin-2 (Lcn2)+ annulus fibrosus (AF) cells (AFC), which propagated and migrated into nucleus pulposus (NP), playing a key role in delivering injury signals and triggering pathological processes, including ferroptosis, fibrosis, and immune reactions. In the NP, Collagen 3-high (Col3hi) NP cells (NPC) were another induced population demonstrating a fibrochondrocyte-like phenotype and high epithelial–mesenchymal transition activation, an important pathway involved in tissue fibrosis. Crucially, lineage tracing experiments in PdgfraCreERT2;R26tdTomat mice revealed the significant migration and proliferation of Pdgfra+ AFCs from the AF into the NP following puncture. These findings provide direct evidence that both Pdgfra+ AFCs and Col3hi NP cells may contribute to NP fibrosis.
Conclusion: Puncture-induced oxidative stress in a stress zone is the primary reaction playing an important role in initiating IVDD. Several puncture-induced cell subpopulations were identified, including Lcn2+ AFC, Col3hi NPC, and Pdgfra+ AFC. Lcn2+ AFC plays a pivotal role in connecting oxidative stress with other pathological processes. Our results clarified the dual origin of Pdgfra+ cells, highlighting the contribution of AF-derived cells to the NP during degeneration and emphasizing the complexity of cellular changes underlying NP fibrosis. Further investigation into the specific contributions of Pdgfra+ cells from different origins to fibrosis is warranted.
intervertebral disc degeneration / LCN2 / oxidative stress / PDGFRA / single-nucleus RNA sequencing / spatial transcriptomic
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.
/
| 〈 |
|
〉 |