Splicing to keep splicing: A feedback system for cellular homeostasis and state transition

Zhonghao Guo , Xurui Zhang , Yachen Li , Yule Chen , Yungang Xu

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (6) : e70369

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (6) : e70369 DOI: 10.1002/ctm2.70369
REVIEW

Splicing to keep splicing: A feedback system for cellular homeostasis and state transition

Author information +
History +
PDF

Abstract

Background: Alternative splicing (AS) plays a crucial role in regulating gene expression and governing proteomic diversity by generating multiple protein isoforms from a single gene. Increasing evidence has highlighted the regulation for pre-mRNA splicing of the splicing factors (SFs). This review aims to examine featured mechanisms and examples of SF regulation by AS, focusing on paradigmatic feedback loops and their biological implications.

Main Body of the Abstract: We specifically focus on the autoregulation and inter-regulation of SFs through AS machinery. These interactions give rise to a feedback system, where the negative feedback loops aid in maintaining cellular homeostasis, and the positive feedback loops play roles in triggering cellular state transitions. We examine the growing evidence highlighting the specific mechanisms employed by SFs to autoregulate their own splicing, including AS-coupled nonsense-mediated mRNA decay (AS-NMD), nuclear retention, and alternative 3'UTR regulation. We showcase the influence of AS feedback in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and cancer. Furthermore, we discuss how master splicing factors can dominantly orchestrate splicing cascades, leading to widespread impacts in cellular processes. We also discuss how non-coding RNAs, particularly circular RNAs and microRNAs, engage in the splicing regulatory networks. Lastly, we showcase how negative and positive feedback loops can collaboratively achieve remarkable biological functions during the cell fate decision.

Short Conclusion: This review highlights the regulation of SFs by AS, providing enriched information for future investigations that aim at deciphering the intricate interplay within splicing regulatory networks.

Keywords

alternative splicing / autoregulation / feedback / non-coding RNAs

Cite this article

Download citation ▾
Zhonghao Guo, Xurui Zhang, Yachen Li, Yule Chen, Yungang Xu. Splicing to keep splicing: A feedback system for cellular homeostasis and state transition. Clinical and Translational Medicine, 2025, 15(6): e70369 DOI:10.1002/ctm2.70369

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 2018; 102(1): 11-26.

[2]

Kelemen O, Convertini P, Zhang Z, et al. Function of alternative splicing. Gene. 2013; 514(1): 1-30.

[3]

Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2023; 24(4): 242-254.

[4]

Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017; 18(7): 437-451.

[5]

Verta JP, Jacobs A. The role of alternative splicing in adaptation and evolution. Trends Ecol Evol. 2022; 37(4): 299-308.

[6]

Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016; 16(7): 413-430.

[7]

Liu Y, Liu X, Lin C, et al. Noncoding RNAs regulate alternative splicing in cancer. J Exp Clin Cancer Res CR. 2021; 40: 11.

[8]

García-Moreno JF, Romão L. Perspective in alternative splicing coupled to nonsense-mediated mRNA decay. Int J Mol Sci. 2020; 21(24): 9424.

[9]

Kino Y, Washizu C, Kurosawa M, et al. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins. Hum Mol Genet. 2015; 24(3): 740-756.

[10]

Mikl M, Cowan CR. Alternative 3′ UTR selection controls PAR-5 homeostasis and cell polarity in C. elegans embryos. Cell Rep. 2014; 8(5): 1380-1390.

[11]

Ninomiya K, Kataoka N, Hagiwara M. Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. J Cell Biol. 2011; 195(1): 27-40.

[12]

Ayala YM, De Conti L, Avendaño-Vázquez SE, et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 2011; 30(2): 277-288.

[13]

Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci. 2021; 22(4): 197-208.

[14]

Lu YY, Krebber H. Nuclear mRNA quality control and cytoplasmic NMD are linked by the guard proteins Gbp2 and Hrb1. Int J Mol Sci. 2021; 22(20): 11275.

[15]

da Costa PJ, Menezes J, Romão L. The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. Int J Biochem Cell Biol. 2017; 91: 168-175.

[16]

Hir HL, Saulière J, Wang Z. The exon junction complex as a node of post-transcriptional networks. Nat Rev Mol Cell Biol. 2016; 17(1): 41-54.

[17]

Ivanova OM, Anufrieva KS, Kazakova AN, et al. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis. 2023; 14(2): 1-17.

[18]

Frankish A, Diekhans M, Jungreis I, et al. GENCODE 2021. Nucleic Acids Res. 2021; 49(D1): D916-D923.

[19]

Anczuków O, Krainer AR. Splicing-factor alterations in cancers. Rna. 2016; 22(9): 1285-1301.

[20]

Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet. 2022; 23(11): 697-710.

[21]

Ge Z, Quek BL, Beemon KL, Hogg JR. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. Izaurralde E, ed. eLife. 2016; 5: e11155.

[22]

Nasif S, Contu L, Mühlemann O. Beyond quality control: the role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol. 2018; 75: 78-87.

[23]

Fritz SE, Ranganathan S, Wang CD, Hogg JR. The RNA-binding protein PTBP1 promotes ATPase-dependent dissociation of the RNA helicase UPF1 to protect transcripts from nonsense-mediated mRNA decay. J Biol Chem. 2020; 295(33): 11613-11625.

[24]

Königs V, de Oliveira Freitas Machado C, Arnold B, et al. SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly. Nat Struct Mol Biol. 2020; 27(3): 260-273.

[25]

Harms FL, Dingemans AJM, Hempel M, et al. De novo PHF5A variants are associated with craniofacial abnormalities, developmental delay, and hypospadias. Genet Med. 2023; 25(10): 100927.

[26]

Morita T, Hayashi K. Regulation of Arp5 expression by alternative splicing coupled to nonsense-mediated RNA decay. Biochem Biophys Res Commun. 2023; 657: 50-58.

[27]

Sun Y, Bao Y, Han W, et al. Autoregulation of RBM10 and cross-regulation of RBM10/RBM5 via alternative splicing-coupled nonsense-mediated decay. Nucleic Acids Res. 2017; 45(14): 8524-8540.

[28]

Koike Y, Sugai A, Hara N, et al. Age-related demethylation of the TDP-43 autoregulatory region in the human motor cortex. Commun Biol. 2021; 4(1): 1-11.

[29]

Du JX, Zhu GQ, Cai JL, et al. Splicing factors: Insights into their regulatory network in alternative splicing in cancer. Cancer Lett. 2021; 501: 83-104.

[30]

Verbeeren J, Verma B, Niemelä EH, Yap K, Makeyev EV, Frilander MJ. Alternative exon definition events control the choice between nuclear retention and cytoplasmic export of U11/U12-65K mRNA. PLoS Genet. 2017; 13(5): e1006824.

[31]

Akef A, Lee ES, Palazzo AF. Splicing promotes the nuclear export of β-globin mRNA by overcoming nuclear retention elements. RNA. 2015; 21(11): 1908-1920.

[32]

Palazzo AF, Lee ES. Sequence determinants for nuclear retention and cytoplasmic export of mRNAs and lncRNAs. Front Genet. 2018; 9: 417907.

[33]

Lee ES, Smith HW, Wolf EJ, et al. ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5′ splice site motifs within nuclear speckles. RNA. 2022; 28(6): 878-894.

[34]

Mabin JW, Woodward LA, Patton RD, et al. The exon junction complex undergoes a compositional switch that alters mRNP structure and nonsense-mediated mRNA decay activity. Cell Rep. 2018; 25(9): 2431-2446.

[35]

Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL expression in autoregulatory feedback loops. RNA Biol. 2018; 15(1): 1-8.

[36]

Li K, Wang Z. Speckles and paraspeckles coordinate to regulate HSV-1 genes transcription. Commun Biol. 2021; 4(1): 1-10.

[37]

Gordon JM, Phizicky DV, Neugebauer KM. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr Opin Genet Dev. 2021; 67: 67-76.

[38]

Hartmann L, Wießner T, Wachter A. Subcellular compartmentation of alternatively spliced transcripts defines serine/arginine-rich protein30 expression1[OPEN]. Plant Physiol. 2018; 176(4): 2886-2903.

[39]

Woerner AC, Frottin F, Hornburg D, et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science. 2016; 351(6269): 173-176.

[40]

Ferrari R, Kapogiannis D, Huey ED, Momeni P. FTD and ALS: a tale of two diseases. Curr Alzheimer Res. 2011; 8(3): 273-294.

[41]

Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet. 2013; 9(10): e1003895.

[42]

Weskamp K, Barmada SJ. TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res. 2018; 1693(Pt A): 67-74.

[43]

Pons M, Miguel L, Miel C, et al. Splicing factors act as genetic modulators of TDP-43 production in a new autoregulatory TDP-43 Drosophila model. Hum Mol Genet. 2017; 26(17): 3396-3408.

[44]

Prashad S, Gopal PP. RNA-binding proteins in neurological development and disease. RNA Biol. 18(7): 972-987.

[45]

D'Alton S, Altshuler M, Lewis J. Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis. RNA. 2015; 21(8): 1419-1432.

[46]

Keating SS, Bademosi AT, San Gil R, Walker AK. Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cell Mol Life Sci. 2023; 80(4): 95.

[47]

Avendaño-Vázquez SE, Dhir A, Bembich S, Buratti E, Proudfoot N, Baralle FE. Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev. 2012; 26(15): 1679-1684.

[48]

Humphrey J, Birsa N, Milioto C, et al. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Res. 2020; 48(12): 6889-6905.

[49]

Koyama A, Sugai A, Kato T, et al. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. Nucleic Acids Res. 2016; 44(12): 5820-5836.

[50]

Preussner M, Gao Q, Morrison E, et al. Splicing-accessible coding 3′UTRs control protein stability and interaction networks. Genome Biol. 2020; 21(1): 186.

[51]

Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol. 2022; 23(12): 779-796.

[52]

Hong D, Jeong S. 3’UTR diversity: expanding repertoire of RNA alterations in human mRNAs. Mol Cells. 2023; 46(1): 48-56.

[53]

Pervouchine D, Popov Y, Berry A, Borsari B, Frankish A, Guigó R. Integrative transcriptomic analysis suggests new autoregulatory splicing events coupled with nonsense-mediated mRNA decay. Nucleic Acids Res. 2019; 47(10): 5293-5306.

[54]

Nance J, Zallen JA. Elaborating polarity: PAR proteins and the cytoskeleton. Dev Camb Engl. 2011; 138(5): 799-809.

[55]

Mockenhaupt S, Makeyev EV. Non-coding functions of alternative pre-mRNA splicing in development. Semin Cell Dev Biol. 2015; 47-48: 32-39.

[56]

Hallegger M, Chakrabarti AM, Lee FCY, et al. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell. 2021; 184(18): 4680-4696.e22.

[57]

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018; 9: 402.

[58]

Boguslawska J, Sokol E, Rybicka B, Czubaty A, Rodzik K, Piekielko-Witkowska A. microRNAs target SRSF7 splicing factor to modulate the expression of osteopontin splice variants in renal cancer cells. Gene. 2016; 595(2): 142-149.

[59]

Sokół E, Kędzierska H, Czubaty A, et al. microRNA-mediated regulation of splicing factors SRSF1, SRSF2 and hnRNP A1 in context of their alternatively spliced 3′UTRs. Exp Cell Res. 2018; 363(2): 208-217.

[60]

Chang C, Rajasekaran M, Qiao Y, et al. The aberrant upregulation of exon 10-inclusive SREK1 through SRSF10 acts as an oncogenic driver in human hepatocellular carcinoma. Nat Commun. 2022; 13(1): 1363.

[61]

Lu Y, Loh YH, Li H, et al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell. 2014; 15(1): 92-101.

[62]

Zhang YP, Liu KL, Wang YX, et al. Down-regulated RBM5 inhibits bladder cancer cell apoptosis by initiating an miR-432-5p/β-catenin feedback loop. FASEB J. 2019; 33(10): 10973-10985.

[63]

Shi J, Pabon K, Scotto KW. Methylxanthines increase expression of the splicing factor SRSF2 by regulating multiple post-transcriptional mechanisms. J Biol Chem. 2015; 290(24): 14986-15003.

[64]

Hackl LM, Fenn A, Louadi Z, et al. Alternative splicing impacts microRNA regulation within coding regions. NAR Genomics Bioinforma. 2023; 5(3): lqad081.

[65]

Giese GE, Walker MD, Ponomarova O, et al. Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. eLife. 9: e60259.

[66]

Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017; 169(5): 824-835.e14.

[67]

Ju J, Aoyama T, Yashiro Y, Yamashita S, Kuroyanagi H, Tomita K. Structure of the Caenorhabditis elegans m6A methyltransferase METT10 that regulates SAM homeostasis. Nucleic Acids Res. 2023; 51(5): 2434-2446.

[68]

Watabe E, Togo-Ohno M, Ishigami Y, et al. m6A-mediated alternative splicing coupled with nonsense-mediated mRNA decay regulates SAM synthetase homeostasis. EMBO J. 2021; 40(14): e106434.

[69]

Mendel M, Delaney K, Pandey RR, et al. Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell. 2021; 184(12): 3125-3142.

[70]

Li F, Yi Y, Miao Y, et al. N6-Methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res. 2019; 79(22): 5785-5798.

[71]

Xiao W, Adhikari S, Dahal U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016; 61(4): 507-519.

[72]

McMillan M, Gomez N, Hsieh C, et al. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell. 2023; 83(2): 219-236.

[73]

Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. BioEssays News Rev Mol Cell Dev Biol. 2008; 30(6): 542-555.

[74]

Lv Y, Zhang W, Zhao J, et al. SRSF1 inhibits autophagy through regulating Bcl-x splicing and interacting with PIK3C3 in lung cancer. Signal Transduct Target Ther. 2021; 6: 108.

[75]

Rosa A, Brivanlou AH. A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J. 2011; 30(2): 237-248.

[76]

Cibi DM, Mia MM, Guna Shekeran S, et al. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. eLife. 2019; 8: e45418.

[77]

Martinez NM, Agosto L, Qiu J, et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev. 2015; 29(19): 2054-2066.

[78]

Ergin V, Erdogan M, Menevse A. Regulation of Shootin1 gene expression involves NGF-induced alternative splicing during neuronal differentiation of PC12 cells. Sci Rep. 2015; 5: 17931.

[79]

Cheng C, Yaffe MB, Sharp PA. A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev. 2006; 20(13): 1715-1720.

[80]

Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S. Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through β-catenin/MDR1 signaling to sustain chemoresistance. Front Oncol. 2022; 12: 906260.

[81]

Ghatak S, Hascall VC, Markwald RR, Misra S. FOLFOX therapy induces feedback upregulation of CD44v6 through YB-1 to maintain stemness in colon initiating cells. Int J Mol Sci. 2021; 22(2): 753.

[82]

Li L, Liu C, Amato RJ, Chang JT, Du G, Li W. CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Oncotarget. 2014; 5(21): 10840-10853.

[83]

Harvey SE, Xu Y, Lin X, et al. Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA. 2018; 24(10): 1326-1338.

[84]

Preca BT, Bajdak K, Mock K, et al. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer. 2015; 137(11): 2566-2577.

[85]

Fiszbein A, Giono LE, Quaglino A, et al. Alternative splicing of G9a regulates neuronal differentiation. Cell Rep. 2016; 14(12): 2797-2808.

[86]

Jiang G, Zhang D, Li Z, et al. Alternative splicing of MaMYB16L regulates starch degradation in banana fruit during ripening. J Integr Plant Biol. 2021; 63(7): 1341-1352.

[87]

de Morrée A, Droog M, Grand Moursel L, et al. Self-regulated alternative splicing at the AHNAK locus. FASEB J. 2012; 26(1): 93-103.

[88]

Cline T, Dorsett M, Sun S, et al. Evolution of the drosophila feminizing switch gene sex-lethal. Genetics. 2010; 186: 1321-1336.

[89]

Primo P, Meccariello A, Inghilterra MG, et al. Targeting the autosomal Ceratitis capitata transformer gene using Cas9 or dCas9 to masculinize XX individuals without inducing mutations. BMC Genet. 2020; 21(Suppl 2): 150.

[90]

Likhoshvai VA, Khlebodarova TM, Bazhan SI, Gainova IA, Chereshnev VA, Bocharov GA. Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components. BMC Genomics. 2014; 15(Suppl 12): S1.

[91]

Hat B, Kochańczyk M, Bogdał MN, Lipniacki T. Feedbacks, bifurcations, and cell fate decision-making in the p53 system. PLOS Comput Biol. 2016; 12(2): e1004787.

[92]

Salz HK. Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Genet Dev. 2011; 21(4): 395-400.

[93]

Jangi M, Sharp PA. Building robust transcriptomes with master splicing factors. Cell. 2014; 159(3): 487-498.

[94]

Wang Y, Rensink AH, Fricke U, et al. Doublesex regulates male-specific differentiation during distinct developmental time windows in a parasitoid wasp. Insect Biochem Mol Biol. 2022; 142: 103724.

[95]

Blackmon H, Ross L, Bachtrog D. Sex determination, sex chromosomes, and karyotype evolution in insects. J Hered. 2017; 108(1): 78-93.

[96]

Miyakawa MO, Miyakawa H. Transformer gene regulates feminization under two complementary sex determination loci in the ant, Vollenhovia emeryi. Insect Biochem Mol Biol. 2023; 156: 103938.

[97]

Moschall R, Rass M, Rossbach O, et al. Drosophila sister-of-sex-lethal reinforces a male-specific gene expression pattern by controlling sex-lethal alternative splicing. Nucleic Acids Res. 2019; 47(5): 2276-2288.

[98]

Haussmann IU, Bodi Z, Sanchez-Moran E, et al. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature. 2016; 540(7632): 301-304.

[99]

Tan A, Fu G, Jin L, et al. Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. Proc Natl Acad Sci. 2013; 110(17): 6766-6770.

[100]

Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014; 33(46): 5311-5318.

[101]

Wojtyś W, Oroń M. How driver oncogenes shape and are shaped by alternative splicing mechanisms in tumors? Cancers. 2023; 15(11): 2918.

[102]

More DA, Kumar A. SRSF3: newly discovered functions and roles in human health and diseases. Eur J Cell Biol. 2020; 99(6): 151099.

[103]

Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, et al. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat. 2020; 53: 100728.

[104]

Prochazka L, Tesarik R, Turanek J. Regulation of alternative splicing of CD44 in cancer. Cell Signal. 2014; 26(10): 2234-2239.

[105]

Gong LJ, Wang XY, Yao X dong, Wu X, Gu WY. CircESRP1 inhibits clear cell renal cell carcinoma progression through the CTCF-mediated positive feedback loop. Cell Death Dis. 2021; 12(11): 1081.

[106]

Maltseva D, Tonevitsky A. RNA-binding proteins regulating the CD44 alternative splicing. Front Mol Biosci. 2023; 10: 1326148.

[107]

Ray D, Yun YC, Idris M, et al. A tumor-associated splice-isoform of MAP2K7 drives dedifferentiation in MBNL1-low cancers via JNK activation. Proc Natl Acad Sci U S A. 2020; 117(28): 16391-16400.

[108]

Catozzi S, Di-Bella JP, Ventura AC, Sepulchre JA. Signaling cascades transmit information downstream and upstream but unlikely simultaneously. BMC Syst Biol. 2016; 10(1): 84.

[109]

Baralle M, Baralle FE. Alternative splicing and liver disease. Ann Hepatol. 2021; 26: 100534.

[110]

Lin JC, Tarn WY. RBM4 down-regulates PTB and antagonizes its activity in muscle cell-specific alternative splicing. J Cell Biol. 2011; 193(3): 509-520.

[111]

Chen YS, Liu CW, Lin YC, Tsai CY, Yang CH, Lin JC. The SRSF3-MBNL1-Acin1 circuit constitutes an emerging axis to lessen DNA fragmentation in colorectal cancer via an alternative splicing mechanism. Neoplasia N Y N. 2020; 22(12): 702-713.

[112]

Liang YC, Lin WC, Lin YJ, Lin JC. The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells. Oncotarget. 2015; 6(35): 38046.

[113]

Lin JC, Lee YC, Liang YC, Fann YC, Johnson KR, Lin YJ. The impact of the RBM4-initiated splicing cascade on modulating the carcinogenic signature of colorectal cancer cells. Sci Rep. 2017; 7(1): 1-11.

[114]

Lin JC, Lee YC, Tan TH, et al. RBM4-SRSF3-MAP4K4 splicing cascade modulates the metastatic signature of colorectal cancer cell. Biochim Biophys Acta Mol Cell Res. 2018; 1865(2): 259-272.

[115]

Nakagaki-Silva EE, Gooding C, Llorian M, et al. Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. eLife. 2019; 8: e46327.

[116]

Jangi M, Boutz PL, Paul P, Sharp PA. Rbfox2 controls autoregulation in RNA-binding protein networks. Genes Dev. 2014; 28(6): 637-651.

[117]

Juan-Mateu J, Villate O, Eizirik DL. Alternative splicing: the new frontier in diabetes research. Eur J Endocrinol. 2016; 174(5): R225.

[118]

Jacob AG, Moutsopoulous I, Petchey A, Mohorianu I, Sinha S, Smith CW. RBPMS promotes contractile smooth muscle splicing and alters phenotypic behaviour of human embryonic stem cell derived vascular smooth muscle cells. BioRxiv Published online November 28, 2022.

[119]

Liu L, Kryvokhyzha D, Rippe C, et al. Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors. Cell Mol Life Sci. 2022; 79(8).

[120]

Barnhart MD, Yang Y, Nakagaki-Silva EE, et al. Phosphorylation of the smooth muscle master splicing regulator RBPMS regulates its splicing activity. Nucleic Acids Res. 2022; 50(20): 11895-11915.

[121]

Yao J, Caballero OL, Huang Y, et al. Altered expression and splicing of ESRP1 in malignant melanoma correlates with epithelial-mesenchymal status and tumor-associated immune cytolytic activity. Cancer Immunol Res. 2016; 4(6): 552-561.

[122]

Li Y, Kong Y, An M, et al. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. J Exp Clin Cancer Res CR. 2023; 42(1): 191.

[123]

Mo Y, Wang Y, Wang Y, et al. Circular RNA circPVT1 promotes nasopharyngeal carcinoma metastasis via the β-TrCP/c-Myc/SRSF1 positive feedback loop. Mol Cancer. 2022; 21(1): 192.

[124]

Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022; 19(3): 188-206.

[125]

Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics. 2021; 219(3): iyab145.

[126]

Jiang Y, Zhou J, Zhao J, et al. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. J Exp Clin Cancer Res CR. 2020; 39(1): 182.

[127]

Zhao J, Jiang Y, Zhang H, et al. The SRSF1/circATP5B/miR-185-5p/HOXB5 feedback loop regulates the proliferation of glioma stem cells via the IL6-mediated JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res CR. 2021; 40(1): 134.

[128]

Wang Y, Yan Q, Mo Y, et al. Splicing factor derived circular RNA circCAMSAP1 accelerates nasopharyngeal carcinoma tumorigenesis via a SERPINH1/c-Myc positive feedback loop. Mol Cancer. 2022; 21: 62.

[129]

Liu P, Wang Z, Ou X, et al. The FUS/circEZH2/KLF5/feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition. Mol Cancer. 2022; 21(1): 198.

[130]

Li H, Jiang Y, Hu J, et al. The U2AF65/circNCAPG/RREB1 feedback loop promotes malignant phenotypes of glioma stem cells through activating the TGF-β pathway. Cell Death Dis. 2023; 14(1): 23.

[131]

Wang Z, Yang L, Wu P, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Mol Cancer. 2022; 21(1): 29.

[132]

Wang ZY, Liu XX, Deng YF. Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction. Cell Death Differ. 2022; 29(4): 709-721.

[133]

Zhao W, Cui Y, Liu L, et al. Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ. 2020; 27(3): 919-933.

[134]

Wong ACH, Rasko JEJ. Splice and dice: intronic microRNAs, splicing and cancer. Biomedicines. 2021; 9(9): 1268.

[135]

Ratnadiwakara M, Mohenska M, Änkö ML. Splicing factors as regulators of miRNA biogenesis: links to human disease. Semin Cell Dev Biol. 2018; 79: 113-122.

[136]

Yang L, Hou Y, Du Y e, et al. Mirtronic miR-4646-5p promotes gastric cancer metastasis by regulating ABHD16A and metabolite lysophosphatidylserines. Cell Death Differ. 2021; 28(9): 2708-2727.

[137]

Wu H, Sun S, Tu K, et al. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell. 2010; 38(1): 67-77.

[138]

Taniguchi K, Sugito N, Kumazaki M, et al. Positive feedback of DDX6/c-Myc/PTB1 regulated by miR-124 contributes to maintenance of the Warburg effect in colon cancer cells. Biochim Biophys Acta Mol Basis Dis. 2015; 1852(9): 1971-1980.

[139]

Xue Y, Ouyang K, Huang J, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell. 2013; 152(1-2): 82-96.

[140]

Chen XD, Liu HL, Li S, et al. The latest role of nerve-specific splicing factor PTBP1 in the transdifferentiation of glial cells into neurons. WIREs RNA. 2023; 14(2): e1740.

[141]

Taniguchi K, Sugito N, Kumazaki M, et al. MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Lett. 2015; 363(1): 17-27.

[142]

Xu Y, Wu W, Han Q, et al. New Insights into the Interplay between non-coding RNAs and RNA-binding protein HnRNPK in regulating cellular functions. Cells. 2019; 8(1): 62.

[143]

Jiang X, Zhang Y, Yuan Y, et al. LncRNA GSCAR promotes glioma stem cell maintenance via stabilizing SOX2 expression. Int J Biol Sci. 2023; 19(6): 1681-1697.

[144]

Tay MLI, Pek JW. Maternally inherited stable intronic sequence RNA triggers a self-reinforcing feedback loop during development. Curr Biol CB. 2017; 27(7): 1062-1067.

[145]

Xue Y, Qian H, Hu J, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016; 19(6): 807.

[146]

Vecchio DD, Abdallah H, Qian Y, Collins JJ. A blueprint for a synthetic genetic feedback controller to reprogram cell fate. Cell Syst. 2017; 4(1): 109-120.e11.

[147]

Pfeuty B, Kaneko K. The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches. Phys Biol. 2009; 6(4): 046013.

[148]

Raser JM, O'Shea EK. Noise in gene expression: origins, consequences, and control. Science. 2005; 309(5743): 2010-2013.

[149]

Raj A, van Oudenaarden A. Stochastic gene expression and its consequences. Cell. 2008; 135(2): 216-226.

[150]

Hansen MMK, Wen WY, Ingerman E, et al. A post-transcriptional feedback mechanism for noise suppression and fate stabilization. Cell. 2018; 173(7): 1609-1621.

[151]

Hansen MMK, Weinberger LS. Post-transcriptional noise control. BioEssays News Rev Mol Cell Dev Biol. 2019; 41(7): e1900044.

[152]

Darbelli L, Choquet K, Richard S, Kleinman CL. Transcriptome profiling of mouse brains with qkI-deficient oligodendrocytes reveals major alternative splicing defects including self-splicing. Sci Rep. 2017; 7(1): 7554.

[153]

Fagg WS, Liu N, Fair JH, et al. Autogenous cross-regulation of Quaking mRNA processing and translation balances Quaking functions in splicing and translation. Genes Dev. 2017; 31(18): 1894-1909.

[154]

González-Rodríguez P, Klionsky DJ, Joseph B. Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun. 2022; 13(1): 2735.

[155]

Leclair NK, Brugiolo M, Urbanski L, et al. Poison exon splicing regulates a coordinated network of SR protein expression during differentiation and tumorigenesis. Mol Cell. 2020; 80(4): 648-665.

[156]

Pina JM, Hernandez LA, Keppetipola NM. Polypyrimidine tract binding proteins PTBP1 and PTBP2 interact with distinct proteins under splicing conditions. PLoS ONE. 2022; 17(2).

[157]

Hu J, Qian H, Xue Y, Fu XD. PTB/nPTB: master regulators of neuronal fate in mammals. Biophys Rep. 2018; 4(4): 204-214.

[158]

Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. Mol Ther Nucleic Acids. 2024.

[159]

Lu YL, Yoo AS. Mechanistic insights into microRNA-induced neuronal reprogramming of human adult fibroblasts. Front Neurosci. 2018; 12: 00522.

[160]

Keppetipola NM, Yeom KH, Hernandez AL, Bui T, Sharma S, Black DL. Multiple determinants of splicing repression activity in the polypyrimidine tract binding proteins, PTBP1 and PTBP2. RNA. 2016; 22(8): 1172-1180.

[161]

Wollerton MC, Gooding C, Wagner EJ, Garcia-Blanco MA, Smith CW. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell. 2004; 13(1): 91-100.

[162]

Chembazhi UV, Tung WS, Hwang H, et al. PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression. Nucleic Acids Res. 2023; 51(5): 2397.

[163]

Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007; 27(3): 435-448.

[164]

Contardo M, De Gioia R, Gagliardi D, et al. Targeting PTB for glia-to-neuron reprogramming in vitro and in vivo for therapeutic development in neurological diseases. Biomedicines. 2022; 10(2): 399.

[165]

Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol. 2013; 14(3): 153-165.

[166]

Lim KH, Han Z, Jeon HY, et al. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat Commun. 2020; 11(1): 3501.

[167]

Kitamura K, Nimura K. Regulation of RNA splicing: aberrant splicing regulation and therapeutic targets in cancer. Cells. 2021; 10(4): 923.

[168]

Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat Cancer. 2022; 3(5): 536-546.

[169]

Palacino J, Swalley SE, Song C, et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol. 2015; 11(7): 511-517.

[170]

Kotake Y, Sagane K, Owa T, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007; 3(9): 570-575.

[171]

Saltzman AL, Pan Q, Blencowe BJ. Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev. 2011; 25(4): 373.

[172]

Dressano K, Weckwerth PR, Poretsky E, et al. Dynamic regulation of Pep-induced immunity through post-translational control of defence transcript splicing. Nat Plants. 2020; 6(8): 1008-1019.

[173]

Escobar-Hoyos L, Knorr K, Abdel-Wahab O. Aberrant RNA Splicing in Cancer. Annu Rev Cancer Biol. 2018; 3(1): 167.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/