The utility of automated artificial intelligence-assisted digital cytomorphology for bone marrow analysis in diagnostic haemato-oncology

David Starostka , Richard Dolezilek , Hans Michael Kvasnicka , Milos Kudelka , Petra Miczkova , Eva Kriegova , David Kolacek , Barbora Sotkovska , Tomas Anlauf , Jarmila Juranova , Katerina Chasakova , Sona Kolarova , Michael Paprota , David Buffa , Peter Kovac , Vit Zmatlo

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70364

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (7) : e70364 DOI: 10.1002/ctm2.70364
LETTER TO THE JOURNAL

The utility of automated artificial intelligence-assisted digital cytomorphology for bone marrow analysis in diagnostic haemato-oncology

Author information +
History +
PDF

Cite this article

Download citation ▾
David Starostka, Richard Dolezilek, Hans Michael Kvasnicka, Milos Kudelka, Petra Miczkova, Eva Kriegova, David Kolacek, Barbora Sotkovska, Tomas Anlauf, Jarmila Juranova, Katerina Chasakova, Sona Kolarova, Michael Paprota, David Buffa, Peter Kovac, Vit Zmatlo. The utility of automated artificial intelligence-assisted digital cytomorphology for bone marrow analysis in diagnostic haemato-oncology. Clinical and Translational Medicine, 2025, 15(7): e70364 DOI:10.1002/ctm2.70364

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Starostka D, Dolezilek R, Chasakova K. Artificial intelligence increases reliability in diagnostic hematooncology. J Clin Transl Pathol. 2023; 3(3): 146-147.

[2]

Zini G, Barbagallo O, Scavone F, Béné MC. Digital morphology in hematology diagnosis and education: the experience of the European LeukemiaNet WP10. Int J Lab Hematol. 2022; 44(Suppl 1): 37-44.

[3]

Lv Z, Cao X, Jin X, Xu S, Deng H. High-accuracy morphological identification of bone marrow cells using deep learning-based Morphogo system. Sci Rep. 2023; 13(1): 13364.

[4]

Bagg A, Raess PW, Rund D, et al. Performance evaluation of a novel artificial intelligence-assisted digital microscopy system for the routine analysis of bone marrow aspirates. Mod Pathol. 2024; 37(9): 100542.

[5]

Janca O, Ochodkova E, Kriegova E, Horak P, Skacelova M, Kudelka M. Real-world data in rheumatoid arthritis: patient similarity networks as a tool for clinical evaluation of disease activity. Applied Network Science. 2023; 8(1): 57.

[6]

Tang G, Fu X, Wang Z, Chen M. A machine learning tool using digital microscopy (Morphogo) for the identification of abnormal lymphocytes in the bone Marrow. Acta Cytol. 2021; 65(4): 354-357.

[7]

Sirinukunwattana K, Aberdeen A, Theissen H, et al. Artificial intelligence-based morphological fingerprinting of megakaryocytes: a new tool for assessing disease in MPN patients. Blood Adv. 2020; 4(14): 3284-3294.

[8]

Chen P, Chen Xu R, Chen N, et al. Detection of metastatic tumor cells in the bone marrow aspirate smears by artificial intelligence (AI)- based Morphogo system. Front Oncol. 2021; 11: 742395.

[9]

Ryou H, Lomas O, Theissen H, Thomas E, Rittscher J, Royston D. Quantitative interpretation of bone marrow biopsies in MPN-What's the point in a molecular age?. Br J Haematol. 2023; 203(4): 523-535.

[10]

Kimura K, Tabe Y, Ai T, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA. Sci Rep. 2019; 9(1): 13385.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/