Microbial metabolism mediates the deteriorative effects of sedentary behaviour on insulin resistance
Jingmeng Ju , Jialin He , Bingqi Ye , Siqi Li , Jiaqi Zhao , Wanlan Chen , Qi Zhang , Wanying Zhao , Jialu Yang , Ludi Liu , Yi Li , Min Xia , Yan Liu
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (5) : e70348
Microbial metabolism mediates the deteriorative effects of sedentary behaviour on insulin resistance
Background: Prolonged sedentary time is a strong risk factor for insulin resistance. Recent evidence indicates that gut microbiota may influence the regulation of insulin sensitivity and demonstrates a distinct profile between sedentary and physically active individuals. However, whether and how microbial metabolism mediates the progression of insulin resistance induced by prolonged sedentary time remains unclear.
Methods: 560 male participants without hypoglycaemic therapy were included, and insulin resistance was evaluated using the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). The gut microbiota was identified through metagenomics, host genetic data were obtained using a genotyping array, and plasma metabolites were quantified by liquid chromatography mass spectrometry.
Results: A panel of 15 sedentary-related species and 38 sedentary-associated metabolic capacities accounted for 31.68% and 21.48% of the sedentary time-related variation in HOMA-IR, respectively. Specifically, decreased Roseburia sp. CAG:471, Intestinibacter bartlettii, and Firmicutes bacterium CAG:83, but increased Bacteroides xylanisolvens related to longer sedentary time, were causally linked to the development of insulin resistance. Furthermore, integrative analysis with metabolomics identified reduced L-citrulline and L-serine, resulting from a suppression of arginine biosynthesis as key microbial effectors linking longer sedentary time to enhanced insulin resistance.
Conclusions: In summary, our findings provide insights into the mediating role of gut microbiota on the progression of insulin resistance induced by excessive sedentary time, and highlight the possibility of counteracting the detrimental effect of prolonged sedentary time on insulin resistance by microbiota-modifying interventions.
gut microbiota / insulin resistance / Mendelian randomisation / sedentary behaviour
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.
/
| 〈 |
|
〉 |