Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data

Chunman Zuo , Junchao Zhu , Jiawei Zou , Luonan Chen

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (5) : e70331

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (5) : e70331 DOI: 10.1002/ctm2.70331
REVIEW

Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data

Author information +
History +
PDF

Abstract

Analysing the genome, epigenome, transcriptome, proteome, and metabolome within the spatial context of cells has transformed our understanding of tumour spatiotemporal heterogeneity. Advances in spatial multi-omics technologies now reveal complex molecular interactions shaping cellular behaviour and tissue dynamics. This review highlights key technologies and computational methods that have advanced spatial domain identification and their pseudo-relations, as well as inference of intra- and inter-cellular molecular networks that drive disease progression. We also discuss strategies to address major challenges, including data sparsity, high-dimensionality, scalability, and heterogeneity. Furthermore, we outline how spatial multi-omics enables novel insights into disease mechanisms, advancing precision medicine and informing targeted therapies.

Keywords

clinical diagnosis and treatment / spatial multimodal integration / tumour spatial and temporal heterogeneity

Cite this article

Download citation ▾
Chunman Zuo, Junchao Zhu, Jiawei Zou, Luonan Chen. Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data. Clinical and Translational Medicine, 2025, 15(5): e70331 DOI:10.1002/ctm2.70331

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han J-DJ. Understanding biological functions through molecular networks. Cell Res. 2008; 18: 224-237.

[2]

Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet. 2021; 22: 71-88.

[3]

Regev A, Teichmann SA, Lander ES, et al. The human cell atlas. elife. 2017; 6: e27041.

[4]

Tan R, Zhou Y, An Z, Xu Y. Cancer is a survival process under persistent microenvironmental and cellular stresses. Genomics Proteomics Bioinformatics. 2023; 21(6): 1260-1265.

[5]

Zuo C, Zhang Y, Cao C, Feng J, Jiao M, Chen L. Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning. Nat Commun. 2022; 13: 5962.

[6]

Zhang Y, Zuo C, Liu L, et al. Single-cell RNA-sequencing atlas reveals an MDK-dependent immunosuppressive environment in ErbB pathway-mutated gallbladder cancer. J Hepatol. 2021; 75: 1128-1141.

[7]

Palla G, Fischer DS, Regev A, Theis FJ. Spatial components of molecular tissue biology. Nat Biotechnol. 2022; 40: 308-318.

[8]

Zhao T, Chiang ZD, Morriss JW, et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature. 2022; 601: 85-91.

[9]

Erickson A, He M, Berglund E, et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature. 2022; 608: 360-367.

[10]

Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017; 7: 1016.

[11]

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018; 15: 81-94.

[12]

Zhu Y, Lee H, White S, et al. Global loss of promoter-enhancer connectivity and rebalancing of gene expression during early colorectal cancer carcinogenesis. Nature Cancer. 2024; 5: 1697-1712.

[13]

Jia Q, Wang A, Yuan Y, Zhu B, Long H. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol. 2022; 11: 24.

[14]

Russo M, Siravegna G, Blaszkowsky L, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016; 6: 147-153.

[15]

Weinstein JA, Regev A, Zhang FDNAM. Optics-free spatio-genetic imaging by a stand-alone chemical reaction. Cell. 2019; 178.

[16]

Zhao T, Chiang ZD, Morriss JW, et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature. 2022; 601: 85-91.

[17]

Carraro C, Bonaguro L, Srinivasa R, et al. Chromatin accessibility profiling of targeted cell populations with laser capture microdissection coupled to ATAC-seq. Cell Rep Methods. 2023; 3: 100598.

[18]

Deng Y, Zhou X, Qian Y, et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science. 2022; 375: 681-686.

[19]

Deng Y, Bartosovic M, Kukanja P, et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature. 2022; 609: 375-383.

[20]

Jiang F, Zhou X, Qian Y, et al. Simultaneous profiling of spatial gene expression and chromatin accessibility during mouse brain development. Nat Methods. 2023; 20: 1048-1057.

[21]

Liu Y, DiStasio M, Su G, et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat Biotechnol. 2023; 41: 1405-1409.

[22]

Llorens-Bobadilla E, Zamboni M, Marklund M, et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat Biotechnol. 2023; 41: 1085-1088.

[23]

Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell. 2023; 186: 2275-2279.

[24]

Thornton CA, Mulqueen RM, Torkenczy KA, et al. Spatially mapped single-cell chromatin accessibility. Nat Commun. 2021; 12: 1274.

[25]

Xie Y, Ruan F, Li Y, et al. Spatial chromatin accessibility sequencing resolves high-order spatial interactions of epigenomic markers. Elife. 2024;12.

[26]

Zhang D, Deng Y, Kukanja P, et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature. 2023; 616: 113-122.

[27]

Cao J, Zheng Z, Sun D, et al. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat Biotechnol. 2024; 42: 1735-1746.

[28]

Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 2022; 185: 1777-1792.e1721.

[29]

Codeluppi S, Borm LE, Zeisel A, et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nature Methods. 2018; 15: 932-935.

[30]

Eng C-HL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature. 2019; 568: 235-239.

[31]

McKellar DW, Mantri M, Hinchman M, et al. Spatial mapping of the total transcriptome by in situ polyadenylation. Nat Biotechnol. 2022; 41: 513-520.

[32]

Ren J, Zhou H, Zeng H, et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic landscape. Nature Methods. 2023; 20: 695-705.

[33]

Srivatsan SR, Regier MC, Barkan E. Embryo-scale, single-cell spatial transcriptomics. Science. 2021; 373: 111-117.

[34]

Stickels RR, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol. 2020; 39: 313-319.

[35]

Vickovic S, Eraslan G, Salmén F. High-definition spatial transcriptomics for in situ tissue profiling. Nature Methods. 2019; 16: 987-990.

[36]

Zeng H, Huang J, Zhou H, et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer's disease. Nat Neurosci. 2023; 26: 430-446.

[37]

Lovatt D, Ruble BK, Lee J, et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nature Methods. 2014; 11: 190-196.

[38]

Wang F, Flanagan J, Su N, et al. RNAscope. J Mol Diagnos. 2012; 14: 22-29.

[39]

Functional single-cell sequencing links dynamic phenotypes to their genotypes. Nat Biomed Eng 6, 501-502 (2022).

[40]

Alon S, Goodwin DR, Sinha A, et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science (New York, NY). 2021: 371.

[41]

Borm LE, Mossi Albiach A, Mannens CCA, et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat Biotechnol. 2023; 41: 222-231.

[42]

Chang T, Han W, Jiang M, et al. Rapid and signal crowdedness-robust in situ sequencing through hybrid block coding. Proc Natl Acad Sci U S A. 2023; 120: e2309227120.

[43]

Chen J, Suo S, Tam PP, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc. 2017; 12: 566-580.

[44]

Cho C-S, Xi J, Si Y, et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell. 2021;184.

[45]

Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science (New York, NY). 2021;373.

[46]

Dhainaut M, Rose SA, Akturk G, et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell. 2022: 185.

[47]

Eng C-HL, Shah S, Thomassie J, Cai L. Profiling the transcriptome with RNA SPOTs. Nat Methods. 2017; 14: 1153-1155.

[48]

Engblom C, Thrane K, Lin Q. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science (New York, NY). 2023; 382: eadf8486.

[49]

Fan Y, Andrusivová Ž, Wu Y, et al. Expansion spatial transcriptomics. Nat Methods. 2023; 20: 1179-1182.

[50]

Fazal FM, Han S, Parker KR, et al. Atlas of subcellular RNA localization revealed by APEX-Seq. Cell. 2019; 178.

[51]

Fu X, Sun L, Dong R, et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell. 2022; 185.

[52]

Giolai M, Verweij W, Lister A, et al. Spatially resolved transcriptomics reveals plant host responses to pathogens. Plant Methods. 2019; 15: 114.

[53]

Ben-Chetrit N, Niu X, Swett AD. Integration of whole transcriptome spatial profiling with protein markers. Nat Biotechnol. 2023; 41: 788-793.

[54]

Gut G, Herrmann MD, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018; 361.

[55]

Keren L, Bosse M, Thompson S, et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci Adv. 2019; 5: eaax5851.

[56]

Kinkhabwala A, Herbel C, Pankratz J. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022; 12: 1911.

[57]

Kuett L, Catena R, Özcan A, et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat Cancer. 2022; 3: 122-133.

[58]

Liao S, Heng Y, Liu W, et al. Integrated spatial transcriptomic and proteomic analysis of fresh frozen tissue based on stereo-seq. bioRxiv. 2023 https://doi.org/10.1101/2023.04.28.538364

[59]

Lin J-R, Mao D, Song Y, et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife. 2018; 7: e31657.

[60]

Liu X, Mao D, Song Y, et al. Computer-aided design of reversible hybridization chain reaction (CAD-HCR) enables multiplexed single-cell spatial proteomics imaging. Sci Adv. 2022; 8: eabk0133.

[61]

Liu Y, DiStasio M, Su G, et al. High#x02010;plex protein and whole transcriptome co#x02010;mapping at cellular resolution with spatial CITE#x02010;seq. Nat Biotechnol. 2023; 41: 1405-1409.

[62]

Liu Y, Yang M, Deng Y, et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell. 2020; 183: 1665-1681.e18.

[63]

Merritt CR, Ong GT, Church SE. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020; 38: 586-599.

[64]

Mund A, Coscia F, Kriston A, et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat Biotechnol. 2022; 40: 1231-1240.

[65]

Radtke AJ, Kandov E, Lowekamp B, et al. IBEX: a versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues. Proc Natl Acad Sci U S A. 2020; 117: 33455-33465.

[66]

Reinhardt SCM, Masullo LA, Baudrexel I, et al. Ångström-resolution fluorescence microscopy. Nature. 2023; 617: 711-716.

[67]

Rosenberger FA, Thielert M, Strauss MT, et al. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat Methods. 2023; 20: 1530-1536.

[68]

Saka SK, Wang Y, Kishi JY, et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat Biotechnol. 2019; 37: 1080-1090.

[69]

Unterauer EM, Shetab Boushehri S, Jevdokimenko K, et al. Spatial proteomics in neurons at single-protein resolution. Cell. 2024; 187.

[70]

Vickovic S, Lötstedt B, Klughammer J. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat Commun. 2022; 13: 795.

[71]

Vu T, Vallmitjana A, Gu J, et al. Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. Nat Commun. 2022; 13: 169.

[72]

Wang Y, Woehrstein JB, Donoghue N. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Lett. 2017; 17: 6131-6139.

[73]

Yang M, Unsihuay D, Hu H, et al. Nano-DESI mass spectrometry imaging of proteoforms in biological tissues with high spatial resolution. Anal Chem. 2023; 95: 5214-5222.

[74]

Gessel MM, Norris JL, Caprioli RM. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteomics. 2014; 107: 71-82.

[75]

McKinley ET, Sui Y, Al-Kofahi Y. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight. 2017; 2.

[76]

Cheng M, Jiang Y, Xu J, et al. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. J Genet Genomics. 2023; 50(9): 625-640.

[77]

Tang L. Spatially resolved multiomics. Nat Methods. 2023; 20: 1871-1871.

[78]

Eisenstein M. Seven technologies to watch in 2022. Nature. 2022; 601: 658-661.

[79]

Liu Y, Yang M, Deng Y, et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell. 2020; 183: 1665-1681.

[80]

Deng Y, Bartosovic M, Kukanja P, et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science. 2022; 375: 681-686.

[81]

Liu X, Mao D, Song Y, et al. Computer-aided design of reversible hybridization chain reaction (CAD-HCR) enables multiplexed single-cell spatial proteomics imaging. Science Advances. 2022; 8(2): eabk0133.

[82]

Vu T, Vallmitjana A, Gu J, et al. Spatial transcriptomics using combinatorial fluore Spatial transcriptomics using combinatorial fluor. Nat Commun. 2022; 13: 169.

[83]

Ben-Chetrit N, Niu X, Swett AD, et al. Integration of whole transcriptome spatial profiling with protein markers. Nat Biotechnol. 2023; 41: 788-793.

[84]

Liao S, Heng Y, Liu W, et al. Integrated spatial transcriptomic and proteomic analysis of fresh frozen tissue based on stereo-seq. bioRxiv. 2004; 538364.

[85]

Zhang D, Deng Y, Kukanja P, et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature. 2023; 616: 113-122.

[86]

Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022; 14: 1-18.

[87]

Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods. 2022; 19: 534-546.

[88]

Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ. Science. 1998; 280: 585-590.

[89]

Lubeck E, Cai L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods. 2012; 9: 743-748.

[90]

Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015; 348: aaa6090.

[91]

He S, Bhatt R, Brown C, et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat Biotechnol. 2022; 40: 1794-1806.

[92]

Ståhl PL, Salmén F, Vickovic S. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 353: 78-82.

[93]

Vickovic S, Ståhl PL, Salmén F. Massive and parallel expression profiling using microarrayed single-cell sequencing. Nat Commun. 2016; 7: 13182.

[94]

Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363: 1463-1467.

[95]

Stickels RR, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol. 2021; 39: 313-319.

[96]

10x Genomics. 2024. https://www.10xgenomics.com/

[97]

Karras P, Bordeu I, Pozniak J, et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature. 2022; 610: 190-198.

[98]

Argelaguet R, Cuomo AS, Stegle O, Marioni JC. Computational principles and challenges in single-cell data integration. Nat Biotechnol. 2021; 39: 1202-1215.

[99]

Zeira R, Land M, Strzalkowski A, Raphael BJ. Alignment and integration of spatial transcriptomics data. Nat Methods. 2022; 19: 567-575.

[100]

Liu Y, Yang C. Computational methods for alignment and integration of spatially resolved transcriptomics data. Comput Struct Biotechnol J. 2024; 23: 1094-1105.

[101]

Long Y, Ang KS, Li M, et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat Commun. 2023; 14: 1155.

[102]

Xu H, Wang S, Fang M, et al. SPACEL: deep learning-based characterization of spatial transcriptome architectures. Nat Commun. 2023; 14: 7603.

[103]

Xu H, Fu H, Long Y, et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Genome Med. 2024; 16: 12.

[104]

Liu W, Liao X, Luo Z, et al. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nat Commun. 2023; 14: 296.

[105]

Liu W, Zhang X, Chai X, et al. ProFAST: a fast and scalable factor analysis for spatially aware dimension reduction of multi-section spatial transcriptomics data. bioRxiv; 548486. 2023.2007. 2011.

[106]

Zhou X, Dong K, Zhang S. Integrating spatial transcriptomics data across different conditions, technologies and developmental stages. Nat Comput Sci. 2023; 3: 894-906.

[107]

Xia C-R, Cao Z-J, Tu X-M, Gao G. Spatial-linked alignment tool (SLAT) for aligning heterogenous slices. Nat Commun. 2023; 14: 7236.

[108]

Guo T, Yuan Z, Pan Y, et al. SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies. Genome Biol. 2023; 24: 241.

[109]

Brbić M, Cao K. Annotation of spatially resolved single-cell data with STELLAR. Nat Methods. 2022; 19: 1411-1418.

[110]

Hu Y, Rong J, Xu Y, et al. Unsupervised and supervised discovery of tissue cellular neighborhoods from cell phenotypes. Nat Methods. 2024;21: 267-278.

[111]

Wang B, Zhang X, Xu C, et al. DeepSP: a deep learning framework for spatial proteomics. J Proteome Res. 2023; 22: 2186-2198.

[112]

Li W, Yang F, Wang F, et al. scPROTEIN: a versatile deep graph contrastive learning framework for single-cell proteomics embedding. Nat Methods. 2024;21: 623-634.

[113]

Cui J, Xia J, Li X, et al. Elucidating spatial complex structures from mass spectrometry imaging with deep multimodal model. 2023 IEEE International Conference on Medical Artificial Intelligence (MedAI). 2023, pp. 110-121.

[114]

Alexandrov T. Spatial metabolomics: from a niche field towards a driver of innovation. Nat Metab. 2023; 5: 1443-1445.

[115]

Cao Z-J, Gao G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat Biotechnol. 2022; 40: 1458-1466.

[116]

Kamimoto K, Hoffmann CM, Morris SACO. Dissecting cell identity via network inference and in silico gene perturbation. BioRxiv. 2002; 947416.

[117]

Zuo C, Chen L. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data. Brief Bioinform. 2021; 22: bbaa287.

[118]

Gayoso A, Steier Z, Lopez R, et al. Joint probabilistic modeling of single-cell multi-omic data with totalVI. Nat Methods. 2021; 18: 272-282.

[119]

Hao Y, Hao S, Andersen-Nissen E. Integrated analysis of multimodal single-cell data. Cell. 2021; 184: 573-3587.

[120]

Zuo C, Dai H, Chen L. Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data. Bioinformatics. 2021; 37: 4091-4099.

[121]

Ma A, Wang X, Li J, et al. Single-cell biological network inference using a heterogeneous graph transformer. Nat Commun. 2023; 14: 964.

[122]

Cui H, Wang C, Maan H, et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat Methods. 2024: 1-11.

[123]

Ashuach T, Gabitto MI, Koodli RV. MultiVI: deep generative model for the integration of multimodal data. Nat Methods. 2023; 20: 1222-1231.

[124]

Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023; 24: 695-713.

[125]

Varrone M, Tavernari D, Santamaria-Martínez A, Walsh LA, Ciriello G. CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity. Nat Genet. 2023;56: 74-84.

[126]

Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018; 15: 1053-1058.

[127]

Chen S, Zhu B, Huang S, et al. Integration of spatial and single-cell data across modalities with weakly linked features. Nat Biotechnol. 2023;42: 1096-1106.

[128]

Long Y, Ang KS, Sethi R, et al. Deciphering spatial domains from spatial multi-omics with SpatialGlue. Nat Methods. 2024; 21: 1658-1667.

[129]

Klein D, Palla G, Lange M, et al. Mapping cells through time and space with moscot. bioRxiv. 2023. 2023.2005. 2011.540374.

[130]

Li Z, Cui X, Chen X, et al. Cross-modality representation and multi-sample integration of spatially resolved omics data. bioRxiv. 2024. 2024.2006. 2010.598155.

[131]

Yuan Q, Duren Z. Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data. Nat Biotechnol. 2024: 1-11.

[132]

Jones MG, Sun D, Min KHJ, et al. Spatiotemporal lineage tracing reveals the dynamic spatial architecture of tumor growth and metastasis. bioRxiv. 2010.

[133]

Chang Z, Xu Y, Dong X, Gao Y, Wang C. Single-cell and spatial multiomic inference of gene regulatory networks using SCRIPro. Bioinformatics. 2024; 40: btae466.

[134]

Zhao E, Stone MR, Ren X, et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol. 2021; 39: 1375-1384.

[135]

Dries R, Zhu Q, Dong R, et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 2021; 22: 1-31.

[136]

Liu W, Liao X, Yang Y, et al. Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data. Nucleic Acids Res. 2022; 50: e72-e72.

[137]

Hu J, Li X, Coleman K, et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat Methods. 2021; 18: 1342-1351.

[138]

Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat Commun. 2022; 13: 1739.

[139]

Zuo C, Xia J, Chen L. Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning. Nat Commun. 2024; 15: 5057.

[140]

Yuan Z, Zhao F, Lin S, et al. Benchmarking spatial clustering methods with spatially resolved transcriptomics data. Nat Methods. 2024; 21: 712-722.

[141]

Edsgärd D, Johnsson P, Sandberg R. Identification of spatial expression trends in single-cell gene expression data. Nat Methods. 2018; 15: 339-342.

[142]

Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes. Nat Methods. 2018; 15: 343-346.

[143]

Sun S, Zhu J, Zhou X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat Methods. 2020; 17: 193-200.

[144]

Zhu J, Sun S, Zhou X. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 2021; 22: 184.

[145]

Hao M, Hua K, Zhang X. SOMDE: a scalable method for identifying spatially variable genes with self-organizing map. Bioinformatics. 2021; 37: 4392-4398.

[146]

DeTomaso D, Yosef N. Hotspot identifies informative gene modules across modalities of single-cell genomics. Cell systems. 2021; 12: e449.

[147]

Zhang C, Dong K, Aihara K, Chen L, Zhang S. STAMarker: determining spatial domain-specific variable genes with saliency maps in deep learning. Nucleic Acids Res. 2023; 51: e103-e103.

[148]

Wang J, Li J, Kramer ST, et al. Dimension-agnostic and granularity-based spatially variable gene identification using BSP. Nat Commun. 2023; 14: 7367.

[149]

Li J, Wang Y, Raina MA, et al. scBSP: a fast and accurate tool for identifying spatially variable genes from spatial transcriptomic data. bioRxiv. 2005.

[150]

Liang Y, Shi G, Cai R, et al. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics. Nat Commun. 2024; 15: 600.

[151]

Chen C, Kim HJ, Yang P. Evaluating spatially variable gene detection methods for spatial transcriptomics data. Genome Biol. 2024; 25: 18.

[152]

Pham D, Tan X, Balderson B, et al. Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues. Nat Commun. 2023; 14: 7739.

[153]

Garcia-Alonso L, Handfield L, Roberts K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nature Genetics. 2021; 53: 1698-1711.

[154]

Arnol D, Schapiro D, Bodenmiller B, Saez-Rodriguez J, Stegle O. Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis. Cell reports. 2019; 29: 202-211.

[155]

Tanevski J, Flores ROR, Gabor A, Schapiro D, Saez-Rodriguez J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 2022; 23: 97.

[156]

Li R, Yang X. De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Genome Biol. 2022; 23: 124.

[157]

Shao X, Li C, Yang H, et al. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nat Commun. 2022; 13: 4429.

[158]

Fischer DS, Schaar AC, Theis FJ. Modeling intercellular communication in tissues using spatial graphs of cells. Nat Biotechnol. 2023; 41: 332-336.

[159]

Cang Z, Zhao Y, Almet AA, et al. Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nat Methods. 2023; 20: 218-228.

[160]

Zhu J, Dai H, Chen L. Revealing cell-cell communication pathways with their spatially coupled gene programs. Brief Bioinform. 2024; 25: bbae202.

[161]

Liu Z, Sun D, Wang C. Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information. Genome Biol. 2022; 23: 218.

[162]

Littman R, Cheng M, Wang N, Peng C, Yang X. SCING: inference of robust, interpretable gene regulatory networks from single cell and spatial transcriptomics. Iscience. 2023; 26.

[163]

Bafna M, Li H, Zhang X. CLARIFY: cell-cell interaction and gene regulatory network refinement from spatially resolved transcriptomics. Bioinformatics. 2023; 39: i484.

[164]

Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012; 481: 306-313.

[165]

Ren H, Walker BL, Cang Z, Nie Q. Identifying multicellular spatiotemporal organization of cells with SpaceFlow. Nat Commun. 2022; 13: 4076.

[166]

Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016; 13: 845-848.

[167]

Abdelaal T, Grossouw LM, Pasterkamp RJ, et al. SIRV: spatial inference of RNA velocity at the single-cell resolution. bioRxiv. 2021. 2021.2007. 2026.453774.

[168]

Hou W, Ji Z. Decomposing spatial heterogeneity of cell trajectories with Paella. bioRxiv. 2022. 2022.2009. 2005.506682.

[169]

Zhou P, Bocci F, Li T, Nie Q. Spatial transition tensor of single cells. Nat Methods. 2024; 21: 1053-1062.

[170]

Shen X, Zuo L, Ye Z, et al. Inferring cell trajectories of spatial transcriptomics via optimal transport analysis. bioRxiv. 2023. 2023.2009. 2004.556175.

[171]

Xia C, Fan J, Emanuel G, Hao J, Zhuang X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci. 2019; 116: 19490-19499.

[172]

Ma C, Balaban M, Liu J, et al. Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics. Nat Methods. 2024: 1-9.

[173]

Ma Y, Zhou X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat Biotechnol. 2022; 40: 1349-1359.

[174]

Kleshchevnikov V, Shmatko A, Dann E, et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol. 2022; 40: 661-671.

[175]

Cable DM, Murray E, Zou LS. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. 2021; 40: 517-526.

[176]

Chen J, Luo T, Jiang M, et al. Cell composition inference and identification of layer-specific spatial transcriptional profiles with POLARIS. Science Advances. 2023; 9: eadd9818.

[177]

Lopez R, Li B, Keren-Shaul H, et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat Biotechnol. 2022; 40: 1360-1369.

[178]

Xia J, Cui J, Huang Z, et al. CellMirror: deciphering cell populations from spatial transcriptomics data by interpretable contrastive learning. 2023 IEEE International Conference on Medical Artificial Intelligence (MedAI). 2023, pp. 165-176.

[179]

Song Q, Su J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief Bioinformat. 2021; 22.

[180]

Li Y, Luo Y. STdGCN: accurate cell-type deconvolution using graph convolutional networks in spatial transcriptomic data. bioRxiv. 2003.

[181]

Zhou Z, Zhong Y, Zhang Z, Ren X. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve. Nat Commun. 2023; 14: 7930.

[182]

Moriel N, Senel E, Friedman N, et al. NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nat Prot. 2021; 16: 4177-4200.

[183]

Biancalani T, Scalia G, Buffoni L, et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat Methods. 2021; 18: 1352-1362.

[184]

Wei R, He S, Bai S, et al. Spatial charting of single-cell transcriptomes in tissues. Nat Biotechnol. 2022; 40: 1190-1199.

[185]

Vahid MR, Brown EL, Steen CB. High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nat Biotechnol. 2023; 41: 1543-1548.

[186]

Miller BF, Huang F, Atta L, Sahoo A, Fan J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat Commun. 2022;13.

[187]

Singh R, He X, Park AK, et al. RETROFIT: reference-free deconvolution of cell-type mixtures in spatial transcriptomics. bioRxiv. 2023.

[188]

Lu MY, Chen B, Williamson DFK, et al. A multimodal generative AI copilot for human pathology. Nature. 2024;634: 466-473.

[189]

Xu H, Usuyama N, Bagga J, et al. A whole-slide foundation model for digital pathology from real-world data. Nature. 2024;630: 181-188.

[190]

Yang F, Wang W, Wang F, et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat Mach Intell. 2022; 4: 852-866.

[191]

Theodoris CV, Xiao L, Chopra A. Transfer learning enables predictions in network biology. Nature. 2023; 618: 616-624.

[192]

Hao M, Gong J, Zeng X, et al. Large-scale foundation model on single-cell transcriptomics. Nat Methods. 2024; 21(8): 1481-1491.

[193]

Mondol RK, Millar EKA, Graham PH, et al. hist2RNA: an efficient deep learning architecture to predict gene expression from breast cancer histopathology images. Cancers. 2023; 15.

[194]

Zeng Y, Wei Z, Yu W, et al. Spatial transcriptomics prediction from histology jointly through Transformer and graph neural networks. Brief Bioinformat. 2022; 23.

[195]

Alsaafin A, Safarpoor A, Sikaroudi M, Hipp JD, Tizhoosh HR. Learning to predict RNA sequence expressions from whole slide images with applications for search and classification. Commun Biol. 2023; 6.

[196]

Xiao X, Kong Y, Li R, Wang Z, Lu H. Transformer with convolution and graph-node co-embedding: an accurate and interpretable vision backbone for predicting gene expressions from local histopathological image. Med Image Anal. 2024; 91.

[197]

Rahaman MM, Millar EKA, Meijering E. Breast cancer histopathology image-based gene expression prediction using spatial transcriptomics data and deep learning. Sci Rep. 2023; 13.

[198]

He B, Bergenstråhle L, Stenbeck L, et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng. 2020; 4: 827-834.

[199]

Pang M, Su K, Li M. Leveraging information in spatial transcriptomics to predict super-resolution gene expression from histology images in tumors. BioRxiv. 2011; 470212.

[200]

Mejia G, Cárdenas P, Ruiz D, Castillo A, Arbeláez P. SEPAL: spatial gene expression prediction from local graphs. Proceedings of the IEEE/CVF International Conference on computer vision. 2023: pp. 2294-2303.

[201]

Schmauch B, Romagnoni A, Pronier E, et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat Commun. 2020; 11: 3877.

[202]

Xiao X, Kong Y, Li R, Wang Z, Lu H. Transformer with convolution and graph-node co-embedding: an accurate and interpretable vision backbone for predicting gene expressions from local histopathological image. Med Image Anal. 2024; 91: 103040.

[203]

Gao R, Yuan X, Ma Y, et al. Harnessing TME depicted by histological images to improve cancer prognosis through a deep learning system. Cell Reports Medicine. 2024; 5.

[204]

Xie R, Pang K, Chung SW, et al. Spatially resolved gene expression prediction from histology images via bi-modal contrastive learning. Advances in Neural Information Processing Systems. 2024: 36.

[205]

Andersson A, Larsson L, Stenbeck L, et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat Commun. 2021; 12: 6012.

[206]

Shulman ED, et al. AI-driven spatial transcriptomics unlocks large-scale breast cancer biomarker discovery from histopathology. bioRxiv. 2024. 2024.2010. 2016.618609.

[207]

Watson BR, Paul B, Rahman RU, et al. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat Commun. 2025; 16: 319.

[208]

Wadekar SN, Chaurasia A, Chadha A, Culurciello E. The evolution of multimodal model architectures. arXiv preprint arXiv:240517927. 2024.

[209]

Chen L, Liu R, Liu Z-P, Li M, Aihara K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep-Uk; 2012: 342.

[210]

Islam M, Yang Y, Simmons AJ. Temporal recording of mammalian development and precancer. Nature. 2024; 634: 1187-1195.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/