Neuroimmune interactions: The bridge between inflammatory bowel disease and the gut microbiota

Jinxia Zhai , Yingjie Li , Jiameng Liu , Cong Dai

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (5) : e70329

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (5) : e70329 DOI: 10.1002/ctm2.70329
REVIEW

Neuroimmune interactions: The bridge between inflammatory bowel disease and the gut microbiota

Author information +
History +
PDF

Abstract

Background: The multidimensional regulatory mechanism of the gut–brain–immune axis in the context of inflammatory bowel disease (IBD) has garnered significant attention, particularly regarding how intestinal microbiota finely regulates immune responses through immune cells and sensory neurons.

Main Body: Metabolites produced by intestinal microbiota influence the phenotype switching of immune cells via complex signalling pathways, thereby modulating their anti-inflammatory and pro-inflammatory functions during intestinal inflammation. Furthermore, sensory neurons exhibit heightened sensitivity to microbial-derived signals, which is essential for preserving intestinal balance and controlling pathological inflammation by integrating peripheral environmental signals with local immune responses. The dynamic equilibrium between immune cells and the neuroimmunoregulation mediated by sensory neurons collectively sustains immune homeostasis within the intestine. However, this coordination mechanism is markedly disrupted under the pathological conditions associated with IBD.

Conclusion: An in-depth exploration of the interactions among immune cells, gut microbiota and sensory neurons may yield significant insights into the pathological mechanisms underlying IBD and guide the creation of new treatment approaches.

Keywords

gut microbiota / immune cells / inflammatory bowel disease / neuroimmunology / sensory neurons

Cite this article

Download citation ▾
Jinxia Zhai, Yingjie Li, Jiameng Liu, Cong Dai. Neuroimmune interactions: The bridge between inflammatory bowel disease and the gut microbiota. Clinical and Translational Medicine, 2025, 15(5): e70329 DOI:10.1002/ctm2.70329

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yoo BB, Mazmanian SK. The enteric network: interactions between the immune and nervous systems of the gut. Immunity. 2017; 46(6): 910-926.

[2]

Boland BS, He Z, Tsai MS, et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci Immunol. 2020; 5(50): eabb4432.

[3]

Klein Wolterink RGJ, Wu GS, Chiu IM, Veiga-Fernandes H. Neuroimmune interactions in peripheral organs. Annu Rev Neurosci. 2022; 45: 339-360.

[4]

Udit S, Blake K, Chiu IM. Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci. 2022; 23(3): 157-171.

[5]

de Jonge WJ. The gut's little brain in control of intestinal immunity. ISRN Gastroenterol. 2013; 2013: 630159.

[6]

Chu C, Artis D, Chiu IM. Neuro-immune interactions in the tissues. Immunity. 2020; 52(3): 464-474.

[7]

Rzap D, Czajkowska M, Calka J. Neurochemical plasticity of nNOS-, VIP- and CART-immunoreactive neurons following prolonged acetylsalicylic acid supplementation in the porcine jejunum. Int J Mol Sci. 2020; 21(6): 2157.

[8]

Curci F, Corbo F, Clodoveo ML, et al. Polyphenols from olive-mill wastewater and biological activity: focus on irritable bowel syndrome. Nutrients. 2022; 14(6): 1264.

[9]

Abdo H, Mahé MM, Derkinderen P, Bach-Ngohou K, Neunlist M, Lardeux B. The omega-6 fatty acid derivative 15-deoxy-Δ¹2,¹⁴-prostaglandin J2 is involved in neuroprotection by enteric glial cells against oxidative stress. J Physiol. 2012; 590(11): 2739-2750.

[10]

Kim YS, Kim N. Sex-gender differences in irritable bowel syndrome. J Neurogastroenterol Motil. 2018; 24(4): 544-558.

[11]

Mulak A, Taché Y. Sex difference in irritable bowel syndrome: do gonadal hormones play a role? Gastroenterol Polska: organ Polsk Towarzystwa Gastroenterol. 2010; 17(2): 89-97.

[12]

Nezami BG, Mwangi SM, Lee JE, et al. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology. 2014; 146(2): 473-483.e3.

[13]

Palus K, Bulc M, Całka J, Zielonka Ł, Nowicki M. Diabetes affects the pituitary adenylate cyclase-activating polypeptide (PACAP)-like immunoreactive enteric neurons in the porcine digestive tract. Int J Mol Sci. 2021; 22(11): 5727.

[14]

Almeida PP, Brito ML, Thomasi B, et al. Is the enteric nervous system a lost piece of the gut-kidney axis puzzle linked to chronic kidney disease? Life Sci. 2024; 351: 122793.

[15]

Lopes LV, Marvin-Guy LF, Fuerholz A, et al. Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life. J Proteom. 2008; 71(1): 80-88.

[16]

Schneider KM, Blank N, Alvarez Y, et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell. 2023; 186(13): 2823-2838.e20.

[17]

Chalazonitis A, Rao M, Sulzer D. Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. NPJ Parkinson's Dis. 2022; 8(1): 50.

[18]

Aubert P, Oleynikova E, Rizvi H, et al. Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring. FASEB J. 2019; 33(1): 770-781.

[19]

Margolis KG, Stevanovic K, Karamooz N, et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology. 2011; 141(2): 588-598, 598.e1-2.

[20]

Brown RM, Le HH, Babcock IW, Harris TH, Gaultier A. Functional analysis of antigen presentation by enteric glial cells during intestinal inflammation. Glia. 2025; 73(2): 291-308.

[21]

Sanchez-Ruiz M, Brunn A, Montesinos-Rongen M, et al. Enteric murine ganglionitis induced by autoimmune CD8 T cells mimics human gastrointestinal dysmotility. Am J Pathol. 2019; 189(3): 540-551.

[22]

Geboes K, Rutgeerts P, Ectors N, et al. Major histocompatibility class II expression on the small intestinal nervous system in Crohn's disease. Gastroenterology. 1992; 103(2): 439-447.

[23]

da Silveira AB, de Oliveira EC, Neto SG, et al. Enteroglial cells act as antigen-presenting cells in chagasic megacolon. Hum Pathol. 2011; 42(4): 522-532.

[24]

Liu MT, Kuan YH, Wang J, Hen R, Gershon MD. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci. 2009; 29(31): 9683-9699.

[25]

Shah PA, Park CJ, Shaughnessy MP, Cowles RA. Serotonin as a mitogen in the gastrointestinal tract: revisiting a familiar molecule in a new role. Cell Mol Gastroenterol Hepatol. 2021; 12(3): 1093-1104.

[26]

Bischoff SC, Mailer R, Pabst O, et al. Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am J Physiol Gastrointest Liver Physiol. 2009; 296(3): G685-G695.

[27]

Schneider KM, Blank N, Thaiss CA. From mental strain to gut pain: a brain-gut pathway transducing psychological stress to intestinal inflammation. Clin Transl Med. 2023; 13(10): e1458.

[28]

Hamilton MK, Wall ES, Robinson CD, Guillemin K, Eisen JS. Enteric nervous system modulation of luminal pH modifies the microbial environment to promote intestinal health. PLoS Pathog. 2022; 18(2): e1009989.

[29]

Di Giovangiulio M, Bosmans G, Meroni E, et al. Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the alpha-7 nicotinic receptor. Mol Med (Cambr, Mass). 2016; 22: 464-476.

[30]

Okayama M, Tsubouchi R, Kato S, Takeuchi K. Protective effect of lafutidine, a novel histamine H2-receptor antagonist, on dextran sulfate sodium-induced colonic inflammation through capsaicin-sensitive afferent neurons in rats. Digest Dis Sci. 2004; 49(10): 1696-1704.

[31]

Engel MA, Khalil M, Mueller-Tribbensee SM, et al. The proximodistal aggravation of colitis depends on substance P released from TRPV1-expressing sensory neurons. J Gastroenterol. 2012; 47(3): 256-265.

[32]

King JW, Bennett ASW, Wood HM, et al. Expression and function of transient receptor potential melastatin 3 in the spinal afferent innervation of the mouse colon. Am J Physiol Gastrointest Liver Physiol.2024; 326(2): G176-G186.

[33]

Cho H, Yang YD, Lee J, et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci. 2012; 15(7): 1015-1021.

[34]

Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003; 112(6): 819-829.

[35]

Romano B, Borrelli F, Fasolino I, et al. The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. Br J Pharmacol. 2013; 169(1): 213-229.

[36]

Engel MA, Leffler A, Niedermirtl F, et al. TRPA1 and substance P mediate colitis in mice. Gastroenterology. 2011; 141(4): 1346-1358.

[37]

de Jong PR, Takahashi N, Peiris M, et al. TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal Immunol. 2015; 8(3): 491-504.

[38]

Matsumoto K, Takagi K, Kato A, et al. Role of transient receptor potential melastatin 2 (TRPM2) channels in visceral nociception and hypersensitivity. Exp Neurol. 2016; 285(pt A): 41-50.

[39]

Matsumoto K, Sugimoto F, Mizuno T, et al. Immunohistochemical characterization of transient receptor potential vanilloid types 2 and 1 in a trinitrobenzene sulfonic acid-induced rat colitis model with visceral hypersensitivity. Cell Tissue Res. 2023; 391(2): 287-303.

[40]

Tian Y, Jian T, Li J, et al. Phenolic acids from Chicory roots ameliorate dextran sulfate sodium-induced colitis in mice by targeting TRP signaling pathways and the gut microbiota. Phytomedicine. 2024; 128: 155378.

[41]

Holzmann B. Modulation of immune responses by the neuropeptide CGRP. Amino Acids. 2013; 45(1): 1-7.

[42]

Mazelin L, Theodorou V, Fioramonti J, Bueno L. Vagally dependent protective action of calcitonin gene-related peptide on colitis. Peptides. 1999; 20(11): 1367-1374.

[43]

Lai NY, Mills K, Chiu IM. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J Intern Med. 2017; 282(1): 5-23.

[44]

Kucharzik T, Maaser C, Lügering A, et al. Recent understanding of IBD pathogenesis: implications for future therapies. Inflamm Bowel Dis. 2006; 12(11): 1068-1083.

[45]

Uwada J, Yazawa T, Islam MT, et al. Activation of muscarinic receptors prevents TNF-α-mediated intestinal epithelial barrier disruption through p38 MAPK. Cell Signal. 2017; 35: 188-196.

[46]

Khan RI, Yazawa T, Anisuzzaman AS, et al. Activation of focal adhesion kinase via M1 muscarinic acetylcholine receptor is required in restitution of intestinal barrier function after epithelial injury. Biochim Biophys Acta. 2014; 1842(4): 635-645.

[47]

Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S. p38 mitogen-activated protein kinase is activated and linked to TNF-α signaling in inflammatory bowel disease. J Immunol. 2002; 168(10): 5342-5351.

[48]

Dahan S, Roda G, Pinn D, et al. Epithelial: lamina propria lymphocyte interactions promote epithelial cell differentiation. Gastroenterology. 2008; 134(1): 192-203.

[49]

Ma Y, Semba S, Maemoto A, et al. Oxazolone-induced over-expression of focal adhesion kinase in colonic epithelial cells of colitis mouse model. FEBS Lett. 2010; 584(18): 3949-3954.

[50]

Lai NY, Musser MA, Pinho-Ribeiro FA, et al. Gut-innervating nociceptor neurons regulate Peyer's patch microfold cells and SFB levels to mediate Salmonella host defense. Cell. 2020; 180(1): 33-49.e22.

[51]

Bhattarai Y, Jie S, Linden DR, et al. Bacterially derived tryptamine increases mucus release by activating a host receptor in a mouse model of inflammatory bowel disease. iScience. 2020; 23(12): 101798.

[52]

Zhang Y, Li J. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-κβ and myosin light-chain kinase pathways. Biochem Biophys Res Commun. 2012; 428(2): 321-326.

[53]

Ibeakanma C, Vanner S. TNFalpha is a key mediator of the pronociceptive effects of mucosal supernatant from human ulcerative colitis on colonic DRG neurons. Gut. 2010; 59(5): 612-621.

[54]

Orr-Urtreger A, Kedmi M, Rosner S, Karmeli F, Rachmilewitz D. Increased severity of experimental colitis in alpha 5 nicotinic acetylcholine receptor subunit-deficient mice. Neuroreport. 2005; 16(10): 1123-1127.

[55]

Bonaz B, Sinniger V, Hoffmann D, et al. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study. Neurogastroenterol Motil. 2016; 28(6): 948-953.

[56]

Fornai M, van den Wijngaard RM, Antonioli L, Pellegrini C, Blandizzi C, de Jonge WJ. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol Motil. 2018; 30(12): e13406.

[57]

Hong M, Yoon SI, Wilson IA. Structure and functional characterization of the RNA-binding element of the NLRX1 innate immune modulator. Immunity. 2012; 36(3): 337-347.

[58]

Neumann L, Mueller M, Moos V, et al. Mucosal inducible NO synthase-producing IgA+ plasma cells in Helicobacter pylori-infected patients. J Immunol (Baltimore, Md: 1950). 2016; 197(5): 1801-1808.

[59]

Mitsialis V, Wall S, Liu P, et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn's disease. Gastroenterology. 2020; 159(2): 591-608.e10.

[60]

Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012; 11(10): 763-776.

[61]

Britton GJ, Contijoch EJ, Spindler MP, et al. Defined microbiota transplant restores Th17/RORγt+ regulatory T cell balance in mice colonized with inflammatory bowel disease microbiotas. Proc Natl Acad Sci USA. 2020; 117(35): 21536-21545.

[62]

Ivanov, II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009; 139(3): 485-498.

[63]

Matsukawa T, Izawa K, Isobe M, et al. Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation. Gut. 2016; 65(5): 777-787.

[64]

Viladomiu M, Kivolowitz C, Abdulhamid A, et al. IgA-coated E. coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation. Sci Transl Med. 2017; 9(376): eaaf9655.

[65]

Britton GJ, Contijoch EJ, Mogno I, et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity. 2019; 50(1): 212-224.e4.

[66]

Sefik E, Geva-Zatorsky N, Oh S, et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells. Science (New York, NY). 2015; 349(6251): 993-997.

[67]

Yang BH, Hagemann S, Mamareli P, et al. Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 2016; 9(2): 444-457.

[68]

Xu M, Pokrovskii M, Ding Y, et al. Author correction: c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature. 2019; 566(7744): E7.

[69]

Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2023; 20(8): 538-553.

[70]

De Winter BY, van den Wijngaard RM, de Jonge WJ. Intestinal mast cells in gut inflammation and motility disturbances. Biochim Biophys Acta. 2012; 1822(1): 66-73.

[71]

Diehl GE, Longman RS, Zhang JX, et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature. 2013; 494(7435): 116-120.

[72]

Kinoshita K, Horiguchi K, Fujisawa M, et al. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis. Histochem Cell Biol. 2007; 127(1): 41-53.

[73]

Phillips RJ, Powley TL. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton Neurosci: Basic Clin. 2012; 169(1): 12-27.

[74]

Guereschi MG, Araujo LP, Maricato JT, et al. Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur J Immunol. 2013; 43(4): 1001-1012.

[75]

del Rey A, Besedovsky HO. Sympathetic nervous system-immune interactions in autoimmune lymphoproliferative diseases. Neuroimmunomodulation. 2008; 15(1): 29-36.

[76]

Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell. 2016; 164(3): 378-391.

[77]

Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014; 63(8): 1293-1299.

[78]

Paulraj RS, Afroz S, Palaniappan B, et al. Intestinal epithelial cell brush border membrane Cl:HCO3 exchanger regulation by mast cells in chronic ileitis. Int J Mol Sci. 2024; 25(20): 11208.

[79]

He S-H. Key role of mast cells and their major secretory products in inflammatory bowel disease. World J Gastroenterol. 2004; 10(3): 309.

[80]

Jones NL, Roifman CM, Griffiths AM, Sherman P. Ketotifen therapy for acute ulcerative colitis in children (a pilot study). Digest Dis Sci. 1998; 43: 609-615.

[81]

Marshall JK, Irvine EJ. Ketotifen treatment of active colitis in patients with 5-aminosalicylate intolerance. Can J Gastroenterol Hepatol. 1998; 12(4): 273-275.

[82]

Tremaine W, Brzezinski A, Katz J, et al. Treatment of mildly to moderately active ulcerative colitis with a tryptase inhibitor (APC 2059): an open-label pilot study. Aliment Pharmacol Therap. 2002; 16(3): 407-413.

[83]

Talbot S, Foster SL, Woolf CJ. Neuroimmunity: physiology and pathology. Annu Rev Immunol. 2016; 34: 421-447.

[84]

Huh JR, Veiga-Fernandes H. Neuroimmune circuits in inter-organ communication. Nat Rev Immunol. 2020; 20(4): 217-228.

[85]

Matheis F, Muller PA, Graves CL, et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell. 2020; 180(1): 64-78 e16.

[86]

Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature. 2020; 579(7800): 575-580.

[87]

Rousseaux C, Thuru X, Gelot A, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007; 13(1): 35-37.

[88]

Vulchanova L, Casey MA, Crabb GW, Kennedy WR, Brown DR. Anatomical evidence for enteric neuroimmune interactions in Peyer's patches. J Neuroimmunol. 2007; 185(1-2): 64-74.

[89]

Yan Y, Ramanan D, Rozenberg M, et al. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut. Immunity. 2021; 54(3): 499-513.e5.

[90]

Drokhlyansky E, Smillie CS, Van Wittenberghe N, et al. The human and mouse enteric nervous system at single-cell resolution. Cell. 2020; 182(6): 1606-1622 e23.

[91]

Negulescu PA, Krasieva TB, Khan A, Kerschbaum HH, Cahalan MD. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity. 1996; 4(5): 421-430.

[92]

Zhu Y, Meerschaert KA, Galvan-Pena S, et al. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science (New York, NY). 2024; 385(6708): eadk1679.

[93]

Yissachar N, Zhou Y, Ung L, et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell. 2017; 168(6): 1135-1148.e12.

[94]

Maruyama K. Senso-immunology: crosstalk between nociceptive and immune systems. FEBS J. 2022; 289(14): 4132-4145.

[95]

Wilcox NC, Taheri G, Halievski K, Talbot S, Silva JR, Ghasemlou N. Interactions between skin-resident dendritic and Langerhans cells and pain-sensing neurons. J Allergy Clin Immunol. 2024; 154(1): 11-19.

[96]

Ahrends T, Aydin B, Matheis F, et al. Enteric pathogens induce tissue tolerance and prevent neuronal loss from subsequent infections. Cell. 2021; 184(23): 5715-5727.e12.

[97]

White JP, Xiong S, Malvin NP, et al. Intestinal dysmotility syndromes following systemic infection by flaviviruses. Cell. 2018; 175(5): 1198-1212.e12.

[98]

Sanchez-Ruiz M, Brunn A, Montesinos-Rongen M, et al. Enteric murine ganglionitis induced by autoimmune CD8 T cells mimics human gastrointestinal dysmotility. Am J Pathol. 2019; 189(3): 540-551.

[99]

Verma-Gandhu M, Bercik P, Motomura Y, et al. CD4+ T-cell modulation of visceral nociception in mice. Gastroenterology. 2006; 130(6): 1721-1728.

[100]

Yashiro T, Ogata H, Zaidi SF, et al. Pathophysiological roles of neuro-immune interactions between enteric neurons and mucosal mast cells in the gut of food allergy mice. Cells. 2021; 10(7): 1586.

[101]

Bao C, Chen O, Sheng H, et al. A mast cell-thermoregulatory neuron circuit axis regulates hypothermia in anaphylaxis. Sci Immunol. 2023; 8(81): eadc9417.

[102]

Sugiura T, Tominaga M, Katsuya H, Mizumura K. Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol. 2002; 88(1): 544-548.

[103]

Gu Q, Lee LY. Effect of protease-activated receptor 2 activation on single TRPV1 channel activities in rat vagal pulmonary sensory neurons. Exp Physiol. 2009; 94(8): 928-936.

[104]

Amadesi S, Nie J, Vergnolle N, et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci. 2004; 24(18): 4300-4312.

[105]

Dai Y, Moriyama T, Higashi T, et al. Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci. 2004; 24(18): 4293-4299.

[106]

Solinski HJ, Kriegbaum MC, Tseng PY, et al. Nppb neurons are sensors of mast cell-induced itch. Cell Rep. 2019; 26(13): 3561-3573 e4.

[107]

Weidinger S, Novak N. Atopic dermatitis. Lancet (Lond Engl). 2016; 387(10023): 1109-1122.

[108]

Kim BS, Siracusa MC, Saenz SA, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013; 5(170): 170ra16.

[109]

Oetjen LK, Mack MR, Feng J, et al. Sensory neurons Co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017; 171(1): 217-228.e13.

[110]

Jain A, Gyori BM, Hakim S, et al. Nociceptor-immune interactomes reveal insult-specific immune signatures of pain. Nat Immunol. 2024; 25(7): 1296-1305.

[111]

Zhou L, Kong G, Palmisano I, et al. Reversible CD8 T cell-neuron cross-talk causes aging-dependent neuronal regenerative decline. Science (New York, NY). 2022; 376(6594): eabd5926.

[112]

Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011; 31(5): 986-1000.

[113]

Wangzhou A, Paige C, Neerukonda SV, et al. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal. 2021; 14(674): eabe1648.

[114]

Liu Q, Sikand P, Ma C, et al. Mechanisms of itch evoked by beta-alanine. J Neurosci. 2012; 32(42): 14532-14537.

[115]

Cohen JA, Edwards TN, Liu AW, et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell. 2019; 178(4): 919-932.e14.

[116]

Enamorado M, Kulalert W, Han SJ, et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell. 2023; 186(3): 607-620.e17.

[117]

Kulalert W, Wells AC, Link VM, et al. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. bioRxiv. 2023.

[118]

Pinho-Ribeiro FA, Deng L, Neel DV, et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature. 2023; 615(7952): 472-481.

[119]

Hu J, Zhang Y, Yi S, et al. Lithocholic acid inhibits dendritic cell activation by reducing intracellular glutathione via TGR5 signaling. Int J Biol Sci. 2022; 18(11): 4545-4559.

[120]

Park S, Zhang T, Yue Y, Wu X. Effects of bile acid modulation by dietary fat, cholecystectomy, and bile acid sequestrant on energy, glucose, and lipid metabolism and gut microbiota in mice. Int J Mol Sci. 2022; 23(11): 5935.

[121]

Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology (Baltimore, Md). 2018; 68(4): 1574-1588.

[122]

Murray K, Barboza M, Rude KM, Brust-Mascher I, Reardon C. Functional circuitry of neuro-immune communication in the mesenteric lymph node and spleen. Brain Behav Immun. 2019; 82: 214-223.

[123]

Ussar S, Haering MF, Fujisaka S, et al. Regulation of glucose uptake and enteroendocrine function by the intestinal epithelial insulin receptor. Diabetes. 2017; 66(4): 886-896.

[124]

Olivares-González L, Velasco S, Campillo I, et al. Nutraceutical supplementation ameliorates visual function, retinal degeneration, and redox status in rd10 mice. Antioxidants (Basel, Switzerland). 2021; 10(7): 1033.

[125]

Waise TMZ, Rasti M, Duca FA, et al. Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production. Nat Commun. 2019; 10(1): 714.

[126]

Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011; 474(7351): 307-317.

[127]

Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018; 15(7): 397-411.

[128]

Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol. 2024; 21(4): 222-247.

[129]

Ticinesi A, Lauretani F, Tana C, Nouvenne A, Ridolo E, Meschi T. Exercise and immune system as modulators of intestinal microbiome: implications for the gut-muscle axis hypothesis. Exerc Immunol Rev. 2019; 25: 84-95.

[130]

Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol. 2017; 32(11): 2005-2014.

[131]

Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017; 15(1): 55-63.

[132]

Aaron L, Christian S, Torsten M. Feed your microbiome and your heart: the gut-heart axis. Front Biosci (Landmark Ed). 2021; 26(3): 468-477.

[133]

Cescon M, Gambarotta G, Calabro S, et al. Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation. Gut Microbes. 2024; 16(1): 2363015.

[134]

Sharkey KA, Savidge TC. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci: Basic Clin. 2014; 181: 94-106.

[135]

Modoux M, Rolhion N, Lefevre JH, et al. Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes. 2022; 14(1): 2105637.

[136]

Zhong S, Liu F, Giniatullin R, et al. Blockade of CCR5 suppresses paclitaxel-induced peripheral neuropathic pain caused by increased deoxycholic acid. Cell Rep. 2023; 42(11): 113386.

[137]

Kamiya T, Wang L, Forsythe P, et al. Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut. 2006; 55(2): 191-196.

[138]

Marion E, Song OR, Christophe T, et al. Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways. Cell. 2014; 157(7): 1565-1576.

[139]

Meseguer V, Alpizar YA, Luis E, et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun. 2014; 5: 3125.

[140]

Bautista DM, Jordt SE, Nikai T, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006; 124(6): 1269-1282.

[141]

Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun. 2005; 19(4): 334-344.

[142]

Perez-Burgos A, Wang B, Mao YK, et al. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol. 2013; 304(2): G211-G220.

[143]

Geva-Zatorsky N, Sefik E, Kua L, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017; 168(5): 928-943 e11.

[144]

Hedin CR, Stagg AJ, Whelan K, Lindsay JO. Family studies in Crohn's disease: new horizons in understanding disease pathogenesis, risk and prevention. Gut. 2012; 61(2): 311-318.

[145]

Brown CC, Rudensky AY. Spatiotemporal regulation of peripheral T cell tolerance. Science (New York, NY). 2023; 380(6644): 472-478.

[146]

Brodin P. Immune-microbe interactions early in life: a determinant of health and disease long term. Science (New York, NY). 2022; 376(6596): 945-950.

[147]

Akagbosu B, Tayyebi Z, Shibu G, et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature. 2022; 610(7933): 752-760.

[148]

Fanning S, Hall LJ, Cronin M, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA. 2012; 109(6): 2108-13.

[149]

Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007; 39(2): 207-211.

[150]

Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A. 2008; 105(52): 20858-20863.

[151]

Murray K, Godinez DR, Brust-Mascher I, Miller EN, Gareau MG, Reardon C. Neuroanatomy of the spleen: mapping the relationship between sympathetic neurons and lymphocytes. PLoS ONE. 2017; 12(7): e0182416.

[152]

Olofsson PS, Steinberg BE, Sobbi R, et al. Blood pressure regulation by CD4(+) lymphocytes expressing choline acetyltransferase. Nat Biotechnol. 2016; 34(10): 1066-1071.

[153]

Upadhyay V, Fu YX. Lymphotoxin signalling in immune homeostasis and the control of microorganisms. Nat Rev Immunol. 2013; 13(4): 270-279.

[154]

Ramirez VT, Godinez DR, Brust-Mascher I, et al. T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. PLoS Pathog. 2019; 15(4): e1007719.

[155]

Darby M, Schnoeller C, Vira A, et al. The M3 muscarinic receptor is required for optimal adaptive immunity to helminth and bacterial infection. PLoS Pathog. 2015; 11(1): e1004636.

[156]

Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev. 2014; 94(1): 265-301.

[157]

Sano T, Huang W, Hall JA, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses. Cell. 2015; 163(2): 381-393.

[158]

Stagg AJ, Bell SJ, Rigby R, Knight SC, Kamm MA, Group APR. Treatment with anti-TNFA antibody reduces expression of CD40 on lamina propria dendritic cells—an early and central step in reducing T cell driven inflammation. Gastroenterology. 2000; 118(4): A353.

[159]

Liu Z, Colpaert S, D'Haens GR, et al. Hyperexpression of CD40 ligand (CD154) in inflammatory bowel disease and its contribution to pathogenic cytokine production. J Immunol (Baltimore Md: 1950). 1999; 163(7): 4049-4057.

[160]

Parronchi P, Romagnani P, Annunziato F, et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am J Pathol. 1997; 150(3): 823-832.

[161]

Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol (Baltimore Md: 1950). 1996; 157(3): 1261-1270.

[162]

Braat H, de Jong EC, van den Brande JM, et al. Dichotomy between Lactobacillus rhamnosus and Klebsiella pneumoniae on dendritic cell phenotype and function. J Mol Med (Berl Germany). 2004; 82(3): 197-205.

[163]

Foligne B, Nutten S, Grangette C, et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol. 2007; 13(2): 236-243.

[164]

He F, Morita H, Ouwehand AC, et al. Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol Immunol. 2002; 46(11): 781-785.

[165]

Sansom DM, Manzotti CN, Zheng Y. What's the difference between CD80 and CD86? Trends Immunol. 2003; 24(6): 314-319.

[166]

Björck P, Banchereau J, Flores-Romo L. CD40 ligation counteracts Fas-induced apoptosis of human dendritic cells. Int Immunol. 1997; 9(3): 365-372.

[167]

Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996; 184(2): 747-752.

[168]

Kedmi R, Najar TA, Mesa KR, et al. A RORgammat(+) cell instructs gut microbiota-specific T(reg) cell differentiation. Nature. 2022; 610(7933): 737-743.

[169]

Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007; 13(20): 2826-2832.

[170]

Segain JP, Raingeard de la Bletiere D, Bourreille A, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000; 47(3): 397-403.

[171]

Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500(7461): 232-236.

[172]

Dohnalová L, Lundgren P, Carty JRE, et al. A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature. 2022; 612(7941): 739-747.

[173]

Meisel JD, Panda O, Mahanti P, Schroeder FC, Kim DH. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell. 2014; 159(2): 267-80.

[174]

Obata Y, Castano A, Boeing S, et al. Neuronal programming by microbiota regulates intestinal physiology. Nature. 2020; 578(7794): 284-289.

[175]

Lewis G, Wang B, Shafiei Jahani P, et al. Dietary fiber-induced microbial short chain fatty acids suppress ILC2-dependent airway inflammation. Front Immunol. 2019; 10: 2051.

[176]

Letsiou E, Teixeira Alves LG, Felten M, et al. Neutrophil-derived extracellular vesicles activate platelets after pneumolysin exposure. Cells. 2021; 10(12): 3581.

[177]

Turner TC, Sok MCP, Hymel LA, et al. Harnessing lipid signaling pathways to target specialized pro-angiogenic neutrophil subsets for regenerative immunotherapy. Sci Adv. 2020; 6(44): eaba7702.

[178]

Diogenes A, Ferraz CC, Akopian AN, Henry MA, Hargreaves KM. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res. 2011; 90(6): 759-764.

[179]

Chiu IM, Heesters BA, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013; 501(7465): 52-57.

[180]

Kunze WA, Mao YK, Wang B, et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med. 2009; 13(8b): 2261-2270.

[181]

Ringel-Kulka T, Goldsmith JR, Carroll IM, et al. Lactobacillus acidophilus NCFM affects colonic mucosal opioid receptor expression in patients with functional abdominal pain - a randomised clinical study. Aliment Pharmacol Therap. 2014; 40(2): 200-207.

[182]

Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun. 2013; 4: 1465.

[183]

Pinho-Ribeiro FA, Baddal B, Haarsma R, et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell. 2018; 173(5): 1083-1097.e22.

[184]

Kosinsky RL, Gonzalez MM, Saul D, et al. The FOXP3+ pro-inflammatory T cell: a potential therapeutic target in Crohn's disease. Gastroenterology. 2024; 166(4): 631-644.e17.

[185]

Bonomo RR, Cook TM, Gavini CK, et al. Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proc Natl Acad Sci USA. 2020; 117(42): 26482-26493.

[186]

Zou T, Yang J, Guo X, He Q, Wang Z, You J. Dietary seaweed-derived polysaccharides improve growth performance of weaned pigs through maintaining intestinal barrier function and modulating gut microbial populations. J Anim Sci Biotechnol. 2021; 12(1): 28.

[187]

Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol. 2019; 49: 1-5.

[188]

Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006; 55(2): 205-211.

[189]

Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004; 53(5): 685-693.

[190]

Wallrapp A, Chiu IM. Neuroimmune interactions in the intestine. Annu Rev Immunol. 2024; 42(1): 489-519.

[191]

Kumbhari A, Cheng TNH, Ananthakrishnan AN, et al. Discovery of disease-adapted bacterial lineages in inflammatory bowel diseases. Cell Host Microbe. 2024; 32(7): 1147-1162 e12.

[192]

Zheng J, Sun Q, Zhang M, et al. Noninvasive, microbiome-based diagnosis of inflammatory bowel disease.Nat Med. 2024; 30(12): 3555-3567.

[193]

Bethlehem L, Estevinho MM, Grinspan A, Magro F, Faith JJ, Colombel JF. Microbiota therapeutics for inflammatory bowel disease: the way forward. Lancet Gastroenterol Hepatol. 2024; 9(5): 476-486.

[194]

Hedin CRH, Vavricka SR, Stagg AJ, et al. The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis, and therapy. J Crohn's Colitis. 2019; 13(5): 541-554.

[195]

Tie Y, Huang Y, Chen R, Li L, Chen M, Zhang S. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets. Gut Microbes. 2023; 15(2): 2265028.

[196]

Wang Z, Wang ZX, Xu KF, et al. A metal-polyphenol-based antidepressant for alleviating colitis-associated mental disorders. Adv Mater. 2025; 37(3): 2410993.

[197]

Noto Llana M, Sarnacki SH, Aya Castañeda Mdel R, Bernal MI, Giacomodonato MN, Cerquetti MC. Consumption of Lactobacillus casei fermented milk prevents Salmonella reactive arthritis by modulating IL-23/IL-17 expression. PLoS ONE. 2013; 8(12): e82588.

[198]

Sanges M, Valente G, Rea M, et al. Probiotics in spondyloarthropathy associated with ulcerative colitis: a pilot study. Eur Rev Med Pharmacol Sci. 2009; 13(3): 233-234.

[199]

Groeger D, O'Mahony L, Murphy EF, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013; 4(4): 325-339.

[200]

Navarro-López V, Martínez-Andrés A, Ramírez-Boscá A, et al. Efficacy and safety of oral administration of a mixture of probiotic strains in patients with psoriasis: a randomized controlled clinical trial. Acta Dermato-Venereol. 2019; 99(12): 1078-1084.

[201]

Chen X, Chen Y, Stanton C, et al. Dose-response efficacy and mechanisms of orally administered Bifidobacterium breve CCFM683 on IMQ-induced psoriasis in mice. Nutrients. 2023; 15(8): 1952.

[202]

Hoentjen F, Welling GW, Harmsen HJ, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis. 2005; 11(11): 977-985.

[203]

Levi Y, Novais GS, Dias RB, et al. Effects of the prebiotic mannan oligosaccharide on the experimental periodontitis in rats. J Clin Periodontol. 2018; 45(9): 1078-1089.

[204]

Iwasaki K, Maeda K, Hidaka K, Nemoto K, Hirose Y, Deguchi S. Daily intake of heat-killed Lactobacillus plantarum L-137 decreases the probing depth in patients undergoing supportive periodontal therapy. Oral Health Prevent Dent. 2016; 14(3): 207-214.

[205]

Wu Z, Liu X, Huang S, et al. Milk fat globule membrane attenuates acute colitis and secondary liver injury by improving the mucus barrier and regulating the gut microbiota. Front Immunol. 2022; 13: 865273.

[206]

Jia X, Jia L, Mo L, et al. Berberine ameliorates periodontal bone loss by regulating gut microbiota. J Dent Res. 2019; 98(1): 107-116.

[207]

Tabuchi Y, Katsushima M, Nishida Y, et al. Oral dextran sulfate sodium administration induces peripheral spondyloarthritis features in SKG mice accompanied by intestinal bacterial translocation and systemic Th1 and Th17 cell activation. Arthritis Res Ther. 2022; 24(1): 176.

[208]

Paramsothy S, Nielsen S, Kamm MA, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology. 2019; 156(5): 1440-1454.e2.

[209]

Ji Y, Lu Y, Yang F, et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci. 2010; 13(3): 302-309.

[210]

Gu XH, Li H, Zhang L, et al. Differential expression of glial cell line-derived neurotrophic factor splice variants in the mouse brain. Neural Regener Res. 2020; 15(2): 270-276.

[211]

Kao WY, Hsiang CY, Ho SC, Ho TY, Lee KT. Novel serotonin-boosting effect of incense smoke from Kynam agarwood in mice: the involvement of multiple neuroactive pathways. J Ethnopharmacol. 2021; 275: 114069.

[212]

Garcia I, Quast KB, Huang L, et al. Local CRH signaling promotes synaptogenesis and circuit integration of adult-born neurons. Dev Cell. 2014; 30(6): 645-659.

[213]

Jiang Y, Xi Y, Li Y, et al. Ethanol promoting the upregulation of C-X-C motif chemokine ligand 1 (CXCL1) and C-X-C motif chemokine ligand 6 (CXCL6) in models of early alcoholic liver disease. Bioengineered. 2022; 13(3): 4688-4701.

[214]

Mimche PN, Brady LM, Bray CF, et al. The receptor tyrosine kinase EphB2 promotes hepatic fibrosis in mice. Hepatology (Baltimore Md). 2015; 62(3): 900-914.

[215]

Nguyen LNT, Nguyen LN, Zhao J, et al. Long non-coding RNA GAS5 regulates T cell functions via miR21-mediated signaling in people living with HIV. Front Immunol. 2021; 12: 601298.

[216]

Fusco F, Valente V, Fergola D, Pescatore A, Lioi MB, Ursini MV. The Incontinentia Pigmenti Genetic Biobank: study design and cohort profile to facilitate research into a rare disease worldwide. Eur J Hum Genet: EJHG. 2019; 27(10): 1509-1518.

[217]

Baier J, Gänsbauer M, Giessler C, et al. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J Clin Investig. 2020; 130(11): 5703-5720.

[218]

Grosheva I, Zheng D, Levy M, et al. High-throughput screen identifies host and microbiota regulators of intestinal barrier function. Gastroenterology. 2020; 159(5): 1807-1823.

[219]

Xue X, Ramakrishnan S, Anderson E, et al. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology. 2013; 145(4): 831-841.

[220]

Panpetch W, Hiengrach P, Nilgate S, et al. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes. 2020; 11(3): 465-480.

[221]

Panda SK, Peng V, Sudan R, et al. Repression of the aryl-hydrocarbon receptor prevents oxidative stress and ferroptosis of intestinal intraepithelial lymphocytes. Immunity. 2023; 56(4): 797-812.e4.

[222]

Devlin JC, Axelrad J, Hine AM, et al. Single-cell transcriptional survey of ileal-anal pouch immune cells from ulcerative colitis patients. Gastroenterology. 2021; 160(5): 1679-1693.

[223]

Banerjee A, Herring CA, Chen B, et al. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology. 2020; 159(6): 2101-2115.e5.

[224]

Chu C, Murdock MH, Jing D, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019; 574(7779): 543-548.

[225]

Crockett AM, Ryan SK, Vásquez AH, et al. Disruption of the blood-brain barrier in 22q11.2 deletion syndrome. Brain. 2021; 144(5): 1351-1360.

[226]

Ahmad SF, Nadeem A, Ansari MA, et al. The potent immunomodulatory compound VGX-1027 regulates inflammatory mediators in CD4+ T cells, which are concomitant with the prevention of neuroimmune dysregulation in BTBR T+ Itpr3tf/J mice. Life Sci. 2019; 237: 116930.

[227]

Ramirez K, Sheridan JF. Antidepressant imipramine diminishes stress-induced inflammation in the periphery and central nervous system and related anxiety- and depressive-like behaviors. Brain Behav Immun. 2016; 57: 293-303.

[228]

Sinniger V, Pellissier S, Fauvelle F, et al. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterol Motil. 2020; 32(10): e13911.

[229]

Peng S, Dhawan V, Eidelberg D, Ma Y. Neuroimaging evaluation of deep brain stimulation in the treatment of representative neurodegenerative and neuropsychiatric disorders. Bioelectron Med. 2021; 7(1): 4.

[230]

Pavlov VA, Tracey KJ. Bioelectronic medicine: preclinical insights and clinical advances. Neuron. 2022; 110(21): 3627-3644.

[231]

Wofford KL, Shultz RB, Burrell JC, Cullen DK. Neuroimmune interactions and immunoengineering strategies in peripheral nerve repair. Prog Neurobiol. 2022; 208: 102172.

[232]

Pfister BJ, Gordon T, Loverde JR, Kochar AS, Mackinnon SE, Cullen DK. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng. 2011; 39(2): 81-124.

[233]

Lee S, Kivimäe S, Dolor A, Szoka FC. Macrophage-based cell therapies: the long and winding road. J Control Release. 2016; 240: 527-540.

[234]

Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials. 2012; 33(34): 8793-801.

[235]

Lv D, Zhou L, Zheng X, Hu Y. Sustained release of collagen VI potentiates sciatic nerve regeneration by modulating macrophage phenotype. Eur J Neurosci. 2017; 45(10): 1258-1267.

[236]

Wofford KL, Singh BS, Cullen DK, Spiller KL. Biomaterial-mediated reprogramming of monocytes via microparticle phagocytosis for sustained modulation of macrophage phenotype. Acta Biomater. 2020; 101: 237-248.

[237]

Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. Nanoscale Adv. 2020; 2(11): 5046-5089.

[238]

Smith TT, Stephan SB, Moffett HF, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 2017; 12(8): 813-820.

[239]

Haycook CP, Balsamo JA, Glass EB, et al. PEGylated PLGA nanoparticle delivery of eggmanone for T cell modulation: applications in rheumatic autoimmunity. Int J Nanomed. 2020; 15: 1215-1228.

[240]

Luo X, Hu L, Zheng H, et al. Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(sialic acid)-octadecylamine conjugate for lung cancer treatment. Drug Deliv. 2018; 25(1): 1200-1212.

[241]

Wang Z, Li J, Cho J, Malik AB. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol. 2014; 9(3): 204-10.

[242]

Schill EM, Floyd AN, Newberry RD. Neonatal development of intestinal neuroimmune interactions. Trends Neurosci. 2022; 45(12): 928-941.

[243]

Leonardi I, Gao IH, Lin WY, et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell. 2022; 185(5): 831-846.e14.

[244]

Teratani T, Mikami Y, Nakamoto N, et al. The liver-brain-gut neural arc maintains the Treg cell niche in the gut. Nature. 2020; 585(7826): 591-596.

[245]

Raheja G, Singh V, Ma K, et al. Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am J Physiol Gastrointest Liver Physiol. 2010; 298(3): G395-G401.

[246]

Borthakur A, Gill RK, Tyagi S, et al. The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr. 2008; 138(7): 1355-1359.

[247]

Sokol H, Seksik P. The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol. 2010; 26(4): 327-331.

[248]

Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012; 13(9): R79.

[249]

Xu J, Xu H, Guo X, et al. Pretreatment with an antibiotics cocktail enhances the protective effect of probiotics by regulating SCFA metabolism and Th1/Th2/Th17 cell immune responses. BMC Microbiol. 2024; 24(1): 91.

[250]

Strati F, Pujolassos M, Burrello C, et al. Antibiotic-associated dysbiosis affects the ability of the gut microbiota to control intestinal inflammation upon fecal microbiota transplantation in experimental colitis models. Microbiome. 2021; 9(1): 39.

[251]

Baker CC, Sessenwein JL, Wood HM, et al. Protease-induced excitation of dorsal root ganglion neurons in response to acute perturbation of the gut microbiota is associated with visceral and somatic hypersensitivity. Cell Mol Gastroenterol Hepatol. 2024; 18(4): 101334.

[252]

Becker E, Bengs S, Aluri S, et al. Doxycycline, metronidazole and isotretinoin: do they modify microRNA/mRNA expression profiles and function in murine T-cells? Sci Rep. 2016; 6: 37082.

[253]

Guan D, Wang Z, Huo J, Xu S, Lam KP. Bruton's tyrosine kinase regulates gut immune homeostasis through attenuating Th1 response. Cell Death Dis. 2021; 12(5): 431.

[254]

Liu HY, Gu F, Zhu C, et al. Epithelial heat shock proteins mediate the protective effects of Limosilactobacillus reuteri in dextran sulfate sodium-induced colitis. Front Immunol. 2022; 13: 865982.

[255]

Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C. Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice. Front Cell Infect Microbiol. 2019; 9: 239.

[256]

Sarrabayrouse G, Bossard C, Chauvin JM, et al. CD4CD8αα lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS Biol. 2014; 12(4): e1001833.

[257]

Guo P, Wang W, Xiang Q, et al. Engineered probiotic ameliorates ulcerative colitis by restoring gut microbiota and redox homeostasis. Cell Host Microbe. 2024; 32(9): 1502-1518.

[258]

Zhang Y, Pan Y, Lin H, et al. Crude Tieguanyin oolong tea polysaccharides regulate intestinal immune and gut microflora in dextran sulfate sodium induced mice colitis crude Tieguanyin oolong tea polysaccharides alleviate colitis. J Sci Food Agric. 2024; 104(5): 3156-3166.

[259]

Velankanni P, Go SH, Jin JB, et al. Chlorella vulgaris modulates gut microbiota and induces regulatory T cells to alleviate colitis in mice. Nutrients. 2023; 15(15): 3293.

[260]

Rahabi M, Salon M, Bruno-Bonnet C, et al. Bioactive fish collagen peptides weaken intestinal inflammation by orienting colonic macrophages phenotype through mannose receptor activation. Eur J Nutr. 2022; 61(4): 2051-2066.

[261]

Luo Y, Liu C, Luo Y, et al. Thiostrepton alleviates experimental colitis by promoting RORγt ubiquitination and modulating dysbiosis. Cell Mol Immunol. 2023; 20(11): 1352-1366.

[262]

Cázares-Olivera M, Miroszewska D, Hu L, et al. Animal unit hygienic conditions influence mouse intestinal microbiota and contribute to T-cell-mediated colitis. Exp Biol Med (Maywood NJ). 2022; 247(19): 1752-1763.

[263]

Ibeakanma C, Ochoa-Cortes F, Miranda-Morales M, et al. Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology. 2011; 141(6): 2098-2108.e5.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/