Upregulated CEMIP promotes intervertebral disc degeneration via AP-1-mediated change in chromatin accessibility

Shibin Shu , Xin Zhang , Zhenhua Feng , Zhen Liu , Kaiyang Wang , Fengrui Li , Yating Wu , Bo Shi , Yong Qiu , Zezhang Zhu , Hongda Bao

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (5) : e70322

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (5) : e70322 DOI: 10.1002/ctm2.70322
RESEARCH ARTICLE

Upregulated CEMIP promotes intervertebral disc degeneration via AP-1-mediated change in chromatin accessibility

Author information +
History +
PDF

Abstract

Background: Intervertebral disc degeneration (IDD), a chronic and multifactorial skeletal disorder, is the primary cause of low back pain. It results in reduced disc height and nucleus pulposus hydration due to proteoglycan loss and nucleus pulposus cells (NPCs) dysfunction within a hypoxic microenvironment. Metabolic dysregulation initiates catabolic processes, leading to extracellular matrix (ECM) degradation and compromising disc biomechanical integrity. Emerging evidence highlights epigenetic modifications as pivotal in IDD, influencing NPC gene expression transcriptionally and post-transcriptionally.

Methods: In order to understand the epigenetic underpinnings of IDD, our study provided a comprehensive profile of chromatin accessibility changes in degenerated NPCs using Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq).

Results: With motif enrichment analysis, we identified the activator protein-1 (AP-1) transcription factor critical in driving the chromatin accessibility changes during IDD. Integrative ATAC-seq and transcriptional profiling revealed cell migration-inducing protein (CEMIP) as a key biomarker and contributor to IDD, exhibiting marked upregulation in IDD. Furthermore, we demonstrated that the AP-1 family, especially, c-Fos, orchestrates the upregulation of CEMIP. Elevated CEMIP plasma levels correlated with clinical IDD severity, and CEMIP knockout mice demonstrated improved IDD.

Conclusions: Mechanistically, CEMIP disrupted ECM homeostasis through its regulation of high molecular weight hyaluronic acid (HMW-HA) degradation, and its contribution to fibrotic changes. Our findings highlight CEMIP's vital role in IDD and identify the AP-1 family as a critical regulator of IDD, providing new potential therapeutic targets for novel IDD interventions.

Keywords

CEMIP / chromatin accessibility / hyaluronic acid / intervertebral disc degeneration / nucleus pulposus

Cite this article

Download citation ▾
Shibin Shu, Xin Zhang, Zhenhua Feng, Zhen Liu, Kaiyang Wang, Fengrui Li, Yating Wu, Bo Shi, Yong Qiu, Zezhang Zhu, Hongda Bao. Upregulated CEMIP promotes intervertebral disc degeneration via AP-1-mediated change in chromatin accessibility. Clinical and Translational Medicine, 2025, 15(5): e70322 DOI:10.1002/ctm2.70322

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The molecular basis of intervertebral disc degeneration. Spine J. 2013; 13: 318-330.

[2]

Ikuno A, Akeda K, Takebayashi SI, Shimaoka M, Okumura K, Sudo A. Genome-wide analysis of DNA methylation profile identifies differentially methylated loci associated with human intervertebral disc degeneration. PLoS One. 2019; 14: 1-20.

[3]

Nummenmaa E, Hämäläinen M, Moilanen LJ, et al. Transient receptor potential ankyrin 1 (TRPA1) is functionally expressed in primary human osteoarthritic chondrocytes. Arthritis Res Ther. 2016; 18: 185.

[4]

Denny SK, Yang D, Chuang CH, et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell. 2016; 166: 328-342.

[5]

Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 2019; 20: 207-220.

[6]

Liu Y, Chang JC, Hon CC, et al. Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis. Sci Rep. 2018; 8: 1-13.

[7]

Nakamichi R, Asahara H. The transcription factors regulating intervertebral disc development. JOR Spine. 2020; 3: e1081.

[8]

Zong D, Huang B, Li Y, et al. Chromatin accessibility landscapes of immune cells in rheumatoid arthritis nominate monocytes in disease pathogenesis. BMC Biol. 2021; 19: 79.

[9]

Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001; 26: 1873-1878.

[10]

Bao H, Zhu F, Liu Z, et al. Coronal curvature and spinal imbalance in degenerative lumbar scoliosis: disc degeneration is associated. Spine (Phila Pa 1976). 2014; 39: E1441-7.

[11]

Che H, Li J, Li Y, et al. 16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. Elife. 2020; 9: e52570.

[12]

Hoyland JA, Le Maitre C, Freemont AJ. Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology. 2008; 47: 809-814.

[13]

Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015; 109: 21.29.1-21.29.9.

[14]

Corces MR, Trevino AE, Hamilton EG, et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017; 14: 959-962.

[15]

Zhu T, Zhou X, You Y, Wang L, He Z, Chen D. cisDynet: an integrated platform for modeling gene-regulatory dynamics and networks. iMeta. 2023; 2: e152.

[16]

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30: 2114-2120.

[17]

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25: 1754-1760.

[18]

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12: 323.

[19]

Ji M, Jiang H, Zhang X, et al. Preclinical development of a microRNA-based therapy for intervertebral disc degeneration. Nat Commun. 2018; 9: 5051.

[20]

Tam V, Chan WCW, Leung VYL, et al. Histological and reference system for the analysis of mouse intervertebral disc. J Orthop Res. 2018; 36: 233-243.

[21]

Han B, Zhu K, Li F, et al. A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. Spine (Phila Pa 1976). 2008; 33: 1925-1934.

[22]

Li G, Zhang W, Liang H, Yang C. Epigenetic regulation in intervertebral disc degeneration. Trends Mol Med. 2022; 28: 803-805.

[23]

Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003; 3: 859-868.

[24]

Li J, Nie L, Zhao Y, et al. IL-17 mediates inflammatory reactions via p38/c-Fos and JNK/c-Jun activation in an AP-1-dependent manner in human nucleus pulposus cells. J Transl Med. 2016; 14: 77.

[25]

Spataro S, Guerra C, Cavalli A, et al. CEMIP (HYBID, KIAA1199): structure, function and expression in health and disease. FEBS J. 2023; 290: 3946-3962.

[26]

Zhang Y, Jia S, Jiang WG. KIAA1199 and its biological role in human cancer and cancer cells (review). Oncol Rep. 2014; 31: 1503-1508.

[27]

Li L, Yan LH, Manoj S, et al. Central role of CEMIP in tumorigenesis and its potential as therapeutic target. J Cancer. 2017; 8: 2238-2246.

[28]

Momoeda M, de Vega S, Kaneko H, et al. Deletion of hyaluronan-binding protein involved in hyaluronan depolymerization (HYBID) results in attenuation of osteoarthritis in mice. Am J Pathol. 2021; 191: 1986-1998.

[29]

Yoshida H, Nagaoka A, Komiya A, et al. Reduction of hyaluronan and increased expression of HYBID (alias CEMIP and KIAA1199) correlate with clinical symptoms in photoaged skin. Br J Dermatol. 2018; 179: 136-144.

[30]

Chen L, Shi K, Ditzel N, et al. KIAA1199 deficiency enhances skeletal stem cell differentiation to osteoblasts and promotes bone regeneration. Nat Commun. 2023; 14: 2016.

[31]

Lyu F-J, Cheung KM, Zheng Z, Wang H, Sakai D, Leung VY. IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat Rev Rheumatol. 2019; 15: 102-112.

[32]

Chen S, Wu X, Lai Y, et al. Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc. Bone Res. 2022; 10: 5.

[33]

Johnson Z, Schoepflin Z, Choi H, Shapiro IM, Risbud MV. Disc in flames: roles of TNF-α and IL-1β in intervertebral disc degeneration. Eur Cell Mater. 2015; 30: 104-117.

[34]

Yoshida H, Nagaoka A, Kusaka-Kikushima A, et al. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci U S A. 2013; 110: 5612-5617.

[35]

Stern R, Asari A, Sugahara K. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006; 85: 699-715.

[36]

Li H, Guo H, Lei C, et al. Nanotherapy in joints: increasing endogenous hyaluronan production by delivering hyaluronan synthase 2. Adv Mater. 2019; 31: e1904535.

[37]

Sun Y, Lyu M, Lu Q, Cheung K, Leung V. Current perspectives on nucleus pulposus fibrosis in disc degeneration and repair. Int J Mol Sci. 2022; 23: 6612.

[38]

Au TYK, Lam T, Peng Y, et al. Transformation of resident notochord-descendent nucleus pulposus cells in mouse injury-induced fibrotic intervertebral discs. Aging Cell. 2020; 19: e13254..

[39]

Yoshida H, Aoki M, Komiya A, et al. HYBID and hyaluronan synthase coordinately regulate hyaluronan metabolism in histamine-stimulated skin fibroblasts. J Biol Chem. 2020; 295: 2483-2494. RA119.010457.

[40]

Cowman MK. Hyaluronan and hyaluronan fragments. Adv Carbohydr Chem Biochem. 2017; 74: 1-59.

[41]

Cyphert JM, Trempus CS, Garantziotis S. Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol. 2015; 2015: 1-8.

[42]

Hill DR, Kessler SP, Rho HK, Cowman MK, de la Motte C. Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium. J Biol Chem. 2012; 287: 30610-30624.

[43]

Tolg C, Hamilton SR, Zalinska E, et al. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. Am J Pathol. 2012; 181: 1250-1270.

[44]

Deroyer C, Poulet C, Paulissen G, et al. CEMIP (KIAA1199) regulates inflammation, hyperplasia and fibrosis in osteoarthritis synovial membrane. Cell Mol Life Sci. 2022; 79: 260.

[45]

Deroyer C, Charlier E, Neuville S, et al. CEMIP (KIAA1199) induces a fibrosis-like process in osteoarthritic chondrocytes. Cell Death Dis. 2019; 10: 103.

[46]

Soroosh A, Albeiroti S, West GA, Willard B, Fiocchi C, de la Motte CA. Crohn's disease fibroblasts overproduce the novel protein KIAA1199 to create proinflammatory hyaluronan fragments. Cell Mol Gastroenterol Hepatol. 2016; 2: 358-368.

[47]

Kwapiszewska G, Gungl A, Wilhelm J, et al. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur Respir J. 2018; 52: 1800564.

[48]

Yang X, Chen Z, Chen C, et al. Bleomycin induces fibrotic transformation of bone marrow stromal cells to treat height loss of intervertebral disc through the TGFβR1/Smad2/3 pathway. Stem Cell Res Ther. 2021; 12: 34.

[49]

Tu J, Li W, Yang S, et al. Single-cell transcriptome profiling reveals multicellular ecosystem of nucleus pulposus during degeneration progression. Adv Sci. 2022; 9: 2103631.

[50]

Shostak K, Zhang X, Hubert P, et al. NF-κB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun. 2014; 5: 5232.

[51]

Boerboom A, Reusch C, Pieltain A, Chariot A, Franzen R. KIAA1199: a novel regulator of MEK/ERK-induced Schwann cell dedifferentiation. Glia. 2017; 65: 1682-1696.

[52]

López-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009; 1: 303-314.

[53]

Zhang C, Zhang X, Huang L, et al. ATF3 drives senescence by reconstructing accessible chromatin profiles. Aging Cell. 2021; 20: e13315.

[54]

Beisaw A, Kuenne C, Guenther S, et al. AP-1 contributes to chromatin accessibility to promote sarcomere disassembly and cardiomyocyte protrusion during Zebrafish heart regeneration. Circ Res. 2020; 126: 1760-1778.

[55]

Gehrke AR, Neverett E, Luo Y-J, et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science (1979). 2019; 363: eaau6173.

[56]

Vizcaya-Molina E, Klein CC, Serras F, et al. Damage-responsive elements in Drosophila regeneration. Genome Res. 2018; 28: 1852-1866.

[57]

Martínez-Zamudio RI, Roux P-F, de Freitas JANLF, et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol. 2020; 22: 842-855.

[58]

Makino H, Seki S, Yahara Y, et al. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain. Sci Rep. 2017; 7: 1-14.

[59]

Kuscu C, Evensen N, Kim D, Hu Y-J, Zucker S, Cao J. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer. PLoS One. 2012; 7: e44661.

[60]

Duong HQ, Nemazanyy I, Rambow F, et al. The endosomal protein CEMIP links WNT signaling to MEK1-ERK1/2 activation in selumetinib-resistant intestinal organoids. Cancer Res. 2018; 78: 4533-4548.

[61]

Yoshida H, Yamazaki K, Komiya A, et al. Inhibitory effects of Sanguisorba officinalis root extract on HYBID (KIAA1199)-mediated hyaluronan degradation and skin wrinkling. Int J Cosmet Sci. 2019; 41: 12-20.

[62]

Yoshida H, Yamazaki K, Komiya A, et al. Inhibition of HYBID (KIAA1199)-mediated hyaluronan degradation and anti-wrinkle effect of Geranium thunbergii extract. J Cosmet Dermatol. 2019; 18: 1052-1060.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/