PDF
Abstract
Background: Chimeric antigen receptor (CAR)-engineered cell therapies have made significant progress in haematological cancer treatment. This success has motivated researchers to investigate its potential applications in non-cancerous diseases, with substantial strides already made in this field.
Main Body: This review summarises the latest research on CAR-engineered cell therapies, with a particular focus on CAR-T cell therapy for non-cancerous diseases, including but not limited to infectious diseases, autoimmune diseases, cardiac diseases and immune-mediated disorders in transplantation. Additionally, the review discusses the current obstacles that need to be addressed for broader clinical applications.
Conclusion: With ongoing research and continuous improvements, CAR-engineered cell therapy holds promise as a potent tool for treating various diseases in the future.
Keywords
autoimmune diseases
/
cardiac diseases
/
chimeric antigen receptor
/
infectious diseases
/
transplantation
Cite this article
Download citation ▾
Lvying Wu, Lingfeng Zhu, Jin Chen.
Diverse potential of chimeric antigen receptor-engineered cell therapy: Beyond cancer.
Clinical and Translational Medicine, 2025, 15(4): e70306 DOI:10.1002/ctm2.70306
| [1] |
Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987; 149(3): 960-968.
|
| [2] |
Dagar G, Gupta A, Masoodi T, et al. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med. 2023; 21(1): 449.
|
| [3] |
Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993; 90(2): 720-724.
|
| [4] |
Finney HM, Lawson AD, Bebbington CR, Weir AN. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol. 1998; 161(6): 2791-2797.
|
| [5] |
Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004; 172(1): 104-113.
|
| [6] |
Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 2005; 12(5): 933-941.
|
| [7] |
Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015; 15(8): 1145-1154.
|
| [8] |
Kagoya Y, Tanaka S, Guo T, et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med. 2018; 24(3): 352-359.
|
| [9] |
Grada Z, Hegde M, Byrd T, et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids. 2013; 2(7): e105.
|
| [10] |
Ruella M, Barrett DM, Kenderian SS, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest. 2016; 126(10): 3814-3826.
|
| [11] |
Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 2018; 20(4): 506-518.
|
| [12] |
Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013; 5(215): 215ra172.
|
| [13] |
Roybal KT, Rupp LJ, Morsut L, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016; 164(4): 770-779.
|
| [14] |
Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018; 173(6): 1426-1438 e11.
|
| [15] |
Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019; 37(9): 1049-1058.
|
| [16] |
Muliaditan T, Halim L, Whilding LM, et al. Synergistic T cell signaling by 41BB and CD28 is optimally achieved by membrane proximal positioning within parallel chimeric antigen receptors. Cell Rep Med. 2021; 2(12): 100457.
|
| [17] |
Nishimura CD, Corrigan D, Zheng XY, et al. TOP CAR with TMIGD2 as a safe and effective costimulatory domain in CAR cells treating human solid tumors. Sci Adv. 2024; 10(19): eadk1857.
|
| [18] |
Irving M, Lanitis E, Migliorini D, Ivics Z, Guedan S. Choosing the right tool for genetic engineering: clinical lessons from chimeric antigen receptor-T cells. Hum Gene Ther. 2021; 32(19-20): 1044-1058.
|
| [19] |
Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer. 2022; 21(1): 78.
|
| [20] |
Ayala Ceja M, Khericha M, Harris CM, Puig-Saus C, Chen YY. CAR-T cell manufacturing: major process parameters and next-generation strategies. J Exp Med. 2024; 221(2): e20230903.
|
| [21] |
Lee A. Obecabtagene autoleucel: first approval. Mol Diagn Ther. 2025. Online ahead of print.
|
| [22] |
Dias J, Garcia J, Agliardi G, Roddie C. CAR-T cell manufacturing landscape—lessons from the past decade and considerations for early clinical development. Mol Ther Methods Clin Dev. 2024; 32(2): 101250.
|
| [23] |
Tyagarajan S, Spencer T, Smith J. Optimizing CAR-T cell manufacturing processes during pivotal clinical trials. Mol Ther Methods Clin Dev. 2020; 16: 136-144.
|
| [24] |
Chen YJ, Abila B, Mostafa Kamel Y. CAR-T: what is next? Cancers (Basel). 2023; 15(3): 663.
|
| [25] |
Blum P, Kayser S. Chimeric antigen receptor (CAR) T-cell therapy in hematologic malignancies: clinical implications and limitations. Cancers (Basel). 2024; 16(8): 1599.
|
| [26] |
Qi C, Gong J, Li J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med. 2022; 28(6): 1189-1198.
|
| [27] |
Del Bufalo F, De Angelis B, Caruana I, et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N Engl J Med. 2023; 388(14): 1284-1295.
|
| [28] |
Maalej KM, Merhi M, Inchakalody VP, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer. 2023; 22(1): 20.
|
| [29] |
Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001; 22(11): 633-640.
|
| [30] |
Crinier A, Narni-Mancinelli E, Ugolini S, Vivier E. SnapShot: natural killer cells. Cell. 2020; 180(6): 1280-1280 e1.
|
| [31] |
Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020; 382(6): 545-553.
|
| [32] |
Chen Y, Yu Z, Tan X, et al. CAR-macrophage: a new immunotherapy candidate against solid tumors. Biomed Pharmacother. 2021; 139: 111605.
|
| [33] |
Li J, Chen P, Ma W. The next frontier in immunotherapy: potential and challenges of CAR-macrophages. Exp Hematol Oncol. 2024; 13(1): 76.
|
| [34] |
Zhang L, Tian L, Dai X, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol. 2020; 13(1): 153.
|
| [35] |
Sun Y, Yuan Y, Zhang B, Zhang X. CARs: a new approach for the treatment of autoimmune diseases. Sci China Life Sci. 2023; 66(4): 711-728.
|
| [36] |
Billi AC, Gharaee-Kermani M, Fullmer J, et al. The female-biased factor VGLL3 drives cutaneous and systemic autoimmunity. JCI Insight. 2019; 4(8): e127291.
|
| [37] |
Li YR, Lyu Z, Chen Y, Fang Y, Yang L. Frontiers in CAR-T cell therapy for autoimmune diseases. Trends Pharmacol Sci. 2024; 45(9): 839-857.
|
| [38] |
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008; 133(5): 775-787.
|
| [39] |
Beheshti SA, Shamsasenjan K, Ahmadi M, Abbasi B. CAR Treg: a new approach in the treatment of autoimmune diseases. Int Immunopharmacol. 2022; 102: 108409.
|
| [40] |
Arjomandnejad M, Kopec AL, Keeler AM. CAR-T regulatory (CAR-Treg) cells: engineering and applications. Biomedicines. 2022; 10(2): 287.
|
| [41] |
Parlakpinar H, Gunata M. Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs. Immunopharmacol Immunotoxicol. 2021; 43(6): 651-665.
|
| [42] |
Koo J, Wang HL. Acute, chronic, and humoral rejection: pathologic features under current immunosuppressive regimes. Surg Pathol Clin. 2018; 11(2): 431-452.
|
| [43] |
Gille I, Claas FHJ, Haasnoot GW, Heemskerk MHM, Heidt S. Chimeric antigen receptor (CAR) regulatory T-cells in solid organ transplantation. Front Immunol. 2022; 13: 874157.
|
| [44] |
Cremoni M, Massa F, Sicard A. Overcoming barriers to widespread use of CAR-Treg therapy in organ transplant recipients. HLA. 2022; 99(6): 565-572.
|
| [45] |
Tompa DR, Immanuel A, Srikanth S, Kadhirvel S. Trends and strategies to combat viral infections: a review on FDA approved antiviral drugs. Int J Biol Macromol. 2021; 172: 524-541.
|
| [46] |
Aquaro S, Borrajo A, Pellegrino M, Svicher V. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Virulence. 2020; 11(1): 400-413.
|
| [47] |
Mohammadi M, Akhoundi M, Malih S, Mohammadi A, Sheykhhasan M. Therapeutic roles of CAR T cells in infectious diseases: clinical lessons learnt from cancer. Rev Med Virol. 2022; 32(4): e2325.
|
| [48] |
Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T cell therapy beyond oncology: autoimmune diseases and viral infections. Biomedicines. 2021; 9(1): 59.
|
| [49] |
Fu W, Lei C, Ma Z, et al. CAR Macrophages for SARS-CoV-2 immunotherapy. Front Immunol. 2021; 12: 669103.
|
| [50] |
Zhang H, Thai PN, Shivnaraine RV, et al. Multiscale drug screening for cardiac fibrosis identifies MD2 as a therapeutic target. Cell. 2024; 187(25): 7143-7163 e22.
|
| [51] |
Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019; 573(7774): 430-433.
|
| [52] |
Gao Z, Yan L, Meng J, et al. Targeting cardiac fibrosis with chimeric antigen receptor macrophages. Cell Discov. 2024; 10(1): 86.
|
| [53] |
Heesterbeek H, Anderson RM, Andreasen V, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015; 347(6227): aaa4339.
|
| [54] |
Sud D, Bigbee C, Flynn JL, Kirschner DE. Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J Immunol. 2006; 176(7): 4296-4314.
|
| [55] |
Zangger N, Oxenius A. T cell immunity to cytomegalovirus infection. Curr Opin Immunol. 2022; 77: 102185.
|
| [56] |
Kumaresan PR, da Silva TA, Kontoyiannis DP. Methods of controlling invasive fungal infections using CD8(+) T cells. Front Immunol. 2017; 8: 1939.
|
| [57] |
Haynes BF, Wiehe K, Borrow P, et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol. 2023; 23(3): 142-158.
|
| [58] |
Chen J, Zhou T, Zhang Y, et al. The reservoir of latent HIV. Front Cell Infect Microbiol. 2022; 12: 945956.
|
| [59] |
Siliciano JD, Kajdas J, Finzi D, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003; 9(6): 727-728.
|
| [60] |
Deeks SG, Archin N, Cannon P, et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat Med. 2021; 27(12): 2085-2098.
|
| [61] |
Yang OO, Tran AC, Kalams SA, Johnson RP, Roberts MR, Walker BD. Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells. Proc Natl Acad Sci U S A. 1997; 94(21): 11478-11483.
|
| [62] |
Deeks SG, Wagner B, Anton PA, et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther. 2002; 5(6): 788-797.
|
| [63] |
Sahu GK, Sango K, Selliah N, Ma Q, Skowron G, Junghans RP. Anti-HIV designer T cells progressively eradicate a latently infected cell line by sequentially inducing HIV reactivation then killing the newly gp120-positive cells. Virology. 2013; 446(1-2): 268-275.
|
| [64] |
Leibman RS, Richardson MW, Ellebrecht CT, et al. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog. 2017; 13(10): e1006613.
|
| [65] |
Ali A, Kitchen SG, Chen ISY, Ng HL, Zack JA, Yang OO. HIV-1-specific chimeric antigen receptors based on broadly neutralizing antibodies. J Virol. 2016; 90(15): 6999-7006.
|
| [66] |
Liu B, Zou F, Lu L, et al. Chimeric antigen receptor T cells guided by the single-chain Fv of a broadly neutralizing antibody specifically and effectively eradicate virus reactivated from latency in CD4+ T lymphocytes isolated from HIV-1-infected individuals receiving suppressive combined antiretroviral therapy. J Virol. 2016; 90(21): 9712-9724.
|
| [67] |
Hale M, Mesojednik T, Romano Ibarra GS, et al. Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol Ther. 2017; 25(3): 570-579.
|
| [68] |
Liu L, Patel B, Ghanem MH, et al. Novel CD4-based bispecific chimeric antigen receptor designed for enhanced anti-HIV potency and absence of HIV entry receptor activity. J Virol. 2015; 89(13): 6685-6694.
|
| [69] |
Anthony-Gonda K, Ray A, Su H, et al. In vivo killing of primary HIV-infected cells by peripheral-injected early memory-enriched anti-HIV duoCAR T cells. JCI Insight. 2022; 7(21): e161698.
|
| [70] |
Carvalho T. First two patients receive CAR T cell therapy for HIV. Nat Med. 2023; 29(6): 1290-1291.
|
| [71] |
Mao Y, Liao Q, Zhu Y, et al. Efficacy and safety of novel multifunctional M10 CAR-T cells in HIV-1-infected patients: a phase I, multicenter, single-arm, open-label study. Cell Discov. 2024; 10(1): 49.
|
| [72] |
Bjorkstrom NK, Strunz B, Ljunggren HG. Natural killer cells in antiviral immunity. Nat Rev Immunol. 2022; 22(2): 112-123.
|
| [73] |
Perera Molligoda Arachchige AS. NK cell-based therapies for HIV infection: investigating current advances and future possibilities. J Leukoc Biol. 2022; 111(4): 921-931.
|
| [74] |
Tran AC, Zhang D, Byrn R, Roberts MR. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol. 1995; 155(2): 1000-1009.
|
| [75] |
Ni Z, Knorr DA, Bendzick L, Allred J, Kaufman DS. Expression of chimeric receptor CD4zeta by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo. Stem Cells. 2014; 32(4): 1021-1031.
|
| [76] |
Lim RM, Rong L, Zhen A, Xie J. A universal CAR-NK cell targeting various epitopes of HIV-1 gp160. ACS Chem Biol. 2020; 15(8): 2299-2310.
|
| [77] |
D'Souza S, Lau KC, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol. 2020; 26(38): 5759-5783.
|
| [78] |
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res. 2024; 12(1): 84.
|
| [79] |
Zhao Q, Liu H, Tang L, et al. Mechanism of interferon alpha therapy for chronic hepatitis B and potential approaches to improve its therapeutic efficacy. Antiviral Res. 2024; 221: 105782.
|
| [80] |
Furutani Y, Hirano Y, Toguchi M, et al. A small molecule iCDM-34 identified by in silico screening suppresses HBV DNA through activation of aryl hydrocarbon receptor. Cell Death Discov. 2023; 9(1): 467.
|
| [81] |
deLemos AS, Chung RT. Hepatitis C treatment: an incipient therapeutic revolution. Trends Mol Med. 2014; 20(6): 315-321.
|
| [82] |
Bohne F, Chmielewski M, Ebert G, et al. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology. 2008; 134(1): 239-247.
|
| [83] |
Krebs K, Bottinger N, Huang LR, et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology. 2013; 145(2): 456-465.
|
| [84] |
Kruse RL, Shum T, Tashiro H, et al. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. Cytotherapy. 2018; 20(5): 697-705.
|
| [85] |
Klopp A, Schreiber S, Kosinska AD, Pule M, Protzer U, Wisskirchen K. Depletion of T cells via inducible caspase 9 increases safety of adoptive T-cell therapy against chronic hepatitis B. Front Immunol. 2021; 12: 734246.
|
| [86] |
Sautto GA, Wisskirchen K, Clementi N, et al. Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein. Gut. 2016; 65(3): 512-523.
|
| [87] |
Fulkerson HL, Nogalski MT, Collins-McMillen D, Yurochko AD. Overview of human cytomegalovirus pathogenesis. Methods Mol Biol. 2021; 2244: 1-18.
|
| [88] |
Krstanovic F, Britt WJ, Jonjic S, Brizic I. Cytomegalovirus infection and inflammation in developing brain. Viruses. 2021; 13(6): 1078.
|
| [89] |
Riddell SR, Walter BA, Gilbert MJ, Greenberg PD. Selective reconstitution of CD8+ cytotoxic T lymphocyte responses in immunodeficient bone marrow transplant recipients by the adoptive transfer of T cell clones. Bone Marrow Transplant. 1994; 14(suppl 4): S78-S84.
|
| [90] |
Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992; 257(5067): 238-241.
|
| [91] |
Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995; 333(16): 1038-1044.
|
| [92] |
Full F, Lehner M, Thonn V, et al. T cells engineered with a cytomegalovirus-specific chimeric immunoreceptor. J Virol. 2010; 84(8): 4083-4088.
|
| [93] |
Olbrich H, Theobald SJ, Slabik C, et al. Adult and cord blood-derived high-affinity gB-CAR-T cells effectively react against human cytomegalovirus infections. Hum Gene Ther. 2020; 31(7-8): 423-439.
|
| [94] |
Ali A, Chiuppesi F, Nguyen M, et al. Chimeric antigen receptors targeting human cytomegalovirus. J Infect Dis. 2020; 222(5): 853-862.
|
| [95] |
Huang W, Bai L, Tang H. Epstein-Barr virus infection: the micro and macro worlds. Virol J. 2023; 20(1): 220.
|
| [96] |
Pociupany M, Snoeck R, Dierickx D, Andrei G. Treatment of Epstein-Barr virus infection in immunocompromised patients. Biochem Pharmacol. 2024; 225: 116270.
|
| [97] |
Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010; 115(5): 925-935.
|
| [98] |
Eom HS, Choi BK, Lee Y, et al. Phase I clinical trial of 4-1BB-based adoptive T-cell therapy for Epstein-Barr virus (EBV)-positive tumors. J Immunother. 2016; 39(3): 140-148.
|
| [99] |
Tang X, Zhou Y, Li W, et al. T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo. J Biomed Res. 2014; 28(6): 468-475.
|
| [100] |
Slabik C, Kalbarczyk M, Danisch S, et al. CAR-T cells targeting Epstein-Barr virus gp350 validated in a humanized mouse model of EBV infection and lymphoproliferative disease. Mol Ther Oncolytics. 2020; 18: 504-524.
|
| [101] |
Mai Q, He B, Deng S, et al. Efficacy of NKG2D CAR-T cells with IL-15/IL-15Ralpha signaling for treating Epstein-Barr virus-associated lymphoproliferative disorder. Exp Hematol Oncol. 2024; 13(1): 85.
|
| [102] |
Guo X, Kazanova A, Thurmond S, Saragovi HU, Rudd CE. Effective chimeric antigen receptor T cells against SARS-CoV-2. iScience. 2021; 24(11): 103295.
|
| [103] |
Ma M, Badeti S, Geng K, Liu D. Efficacy of targeting SARS-CoV-2 by CAR-NK cells. bioRxiv. 2020.
|
| [104] |
Ma MT, Badeti S, Chen CH, et al. CAR-NK cells effectively target SARS-CoV-2-spike-expressing cell lines in vitro. Front Immunol. 2021; 12: 652223.
|
| [105] |
Ma MT, Jiang Q, Chen CH, et al. S309-CAR-NK cells bind the Omicron variants in vitro and reduce SARS-CoV-2 viral loads in humanized ACE2-NSG mice. J Virol. 2024; 98(6): e0003824.
|
| [106] |
Christodoulou I, Rahnama R, Ravich JW, et al. Glycoprotein targeted CAR-NK cells for the treatment of SARS-CoV-2 infection. Front Immunol. 2021; 12: 763460.
|
| [107] |
Chan JF, Oh YJ, Yuan S, et al. A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo. Cell Rep Med. 2022; 3(10): 100774.
|
| [108] |
Lu T, Ma R, Dong W, et al. Off-the-shelf CAR natural killer cells secreting IL-15 target spike in treating COVID-19. Nat Commun. 2022; 13(1): 2576.
|
| [109] |
Wu ZL, Zhao J, Xu R. Recent advances in oral nano-antibiotics for bacterial infection therapy. Int J Nanomed. 2020; 15: 9587-9610.
|
| [110] |
Kolar M. Bacterial infections, antimicrobial resistance and antibiotic therapy. Life (Basel). 2022; 12(4): 468.
|
| [111] |
Rao M, Ligeiro D, Maeurer M. Precision medicine in the clinical management of respiratory tract infections including multidrug-resistant tuberculosis: learning from innovations in immuno-oncology. Curr Opin Pulm Med. 2019; 25(3): 233-241.
|
| [112] |
Kee SJ, Kwon YS, Park YW, et al. Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun. 2012; 80(6): 2100-2108.
|
| [113] |
Paidipally P, Tripathi D, Van A, et al. Interleukin-21 regulates natural killer cell responses during Mycobacterium tuberculosis infection. J Infect Dis. 2018; 217(8): 1323-1333.
|
| [114] |
Paquin-Proulx D, Costa PR, Terrassani Silveira CG, et al. Latent Mycobacterium tuberculosis infection is associated with a higher frequency of mucosal-associated invariant T and invariant natural killer T cells. Front Immunol. 2018; 9: 1394.
|
| [115] |
Morte-Romea E, Pesini C, Pellejero-Sagastizabal G, et al. CAR immunotherapy for the treatment of infectious diseases: a systematic review. Front Immunol. 2024; 15: 1289303.
|
| [116] |
Liang J, Fu L, Li M, et al. Allogeneic Vgamma9Vdelta2 T-cell therapy promotes pulmonary lesion repair: an open-label, single-arm pilot study in patients with multidrug-resistant tuberculosis. Front Immunol. 2021; 12: 756495.
|
| [117] |
Chen S, Yang J, Wei Y, Wei X. Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol. 2020; 17(1): 36-49.
|
| [118] |
Galli G, Saleh M. Immunometabolism of macrophages in bacterial infections. Front Cell Infect Microbiol. 2020; 10: 607650.
|
| [119] |
Hoyer FF, Naxerova K, Schloss MJ, et al. Tissue-specific macrophage responses to remote injury impact the outcome of subsequent local immune challenge. Immunity. 2019; 51(5): 899-914 e7.
|
| [120] |
Flannagan RS, Jaumouille V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol. 2012; 7: 61-98.
|
| [121] |
Flannagan RS, Kuiack RC, McGavin MJ, Heinrichs DE. Staphylococcus aureus uses the GraXRS regulatory system to sense and adapt to the acidified phagolysosome in macrophages. mBio. 2018; 9(4): e01143-18.
|
| [122] |
Li Z, Zhang S, Fu Z, et al. Surficial nano-deposition locoregionally yielding bactericidal super CAR-macrophages expedites periprosthetic osseointegration. Sci Adv. 2023; 9(22): eadg3365.
|
| [123] |
Tang C, Jing W, Han K, et al. mRNA-laden lipid-nanoparticle-enabled in situ CAR-macrophage engineering for the eradication of multidrug-resistant bacteria in a sepsis mouse model. ACS Nano. 2024; 18(3): 2261-2278.
|
| [124] |
Ademe M. Immunomodulation for the treatment of fungal infections: opportunities and challenges. Front Cell Infect Microbiol. 2020; 10: 469.
|
| [125] |
Gintjee TJ, Donnelley MA, Thompson GR,. 3rdAspiring antifungals: review of current antifungal pipeline developments. J Fungi (Basel). 2020; 6(1): 28.
|
| [126] |
Firacative C. Invasive fungal disease in humans: are we aware of the real impact? Mem Inst Oswaldo Cruz. 2020; 115: e200430.
|
| [127] |
Kumaresan PR, Manuri PR, Albert ND, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci U S A. 2014; 111(29): 10660-10665.
|
| [128] |
Seif M, Kakoschke TK, Ebel F, et al. CAR T cells targeting Aspergillus fumigatus are effective at treating invasive pulmonary aspergillosis in preclinical models. Sci Transl Med. 2022; 14(664): eabh1209.
|
| [129] |
Dos Santos MH, Machado MP, Kumaresan PR, da Silva TA. Titan cells and yeast forms of Cryptococcus neoformans and Cryptococcus gattii are recognized by GXMR-CAR. Microorganisms. 2021; 9(9): 1886.
|
| [130] |
Conrad N, Misra S, Verbakel JY, et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet. 2023; 401(10391): 1878-1890.
|
| [131] |
Xiao ZX, Miller JS, Zheng SG. An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev. 2021; 20(2): 102743.
|
| [132] |
Schett G, Mackensen A, Mougiakakos D. CAR T-cell therapy in autoimmune diseases. Lancet. 2023; 402(10416): 2034-2044.
|
| [133] |
Baghdadi H, Abdel-Aziz N, Ahmed NS, et al. Ameliorating role exerted by Al-Hijamah in autoimmune diseases: effect on serum autoantibodies and inflammatory mediators. Int J Health Sci (Qassim). 2015; 9(2): 207-232.
|
| [134] |
Greco R, Alexander T, Del Papa N, et al. Innovative cellular therapies for autoimmune diseases: expert-based position statement and clinical practice recommendations from the EBMT practice harmonization and guidelines committee. EClinicalMedicine. 2024; 69: 102476.
|
| [135] |
Pisetsky DS. Unique interplay between antinuclear antibodies and nuclear molecules in the pathogenesis of systemic lupus erythematosus. Arthritis Rheumatol. 2024; 76: 1334-1343.
|
| [136] |
Krustev E, Clarke AE, Barber MRW. B cell depletion and inhibition in systemic lupus erythematosus. Expert Rev Clin Immunol. 2023; 19(1): 55-70.
|
| [137] |
Komura K. CD19: a promising target for systemic sclerosis. Front Immunol. 2024; 15: 1454913.
|
| [138] |
Kansal R, Richardson N, Neeli I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med. 2019; 11(482): eaav1648.
|
| [139] |
Jin X, Xu Q, Pu C, et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol. 2021; 18(8): 1896-1903.
|
| [140] |
Mougiakakos D, Kronke G, Volkl S, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021; 385(6): 567-569.
|
| [141] |
Mackensen A, Muller F, Mougiakakos D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022; 28(10): 2124-2132.
|
| [142] |
Muller F, Taubmann J, Bucci L, et al. CD19 CAR T-cell therapy in autoimmune disease - a case series with follow-up. N Engl J Med. 2024; 390(8): 687-700.
|
| [143] |
Martin J, Cheng Q, Laurent SA, et al. B-cell maturation antigen (BCMA) as a biomarker and potential treatment target in systemic lupus erythematosus. Int J Mol Sci. 2024; 25(19): 10845.
|
| [144] |
Wang W, He S, Zhang W, et al. BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: a phase 1 open-label clinical trial. Ann Rheum Dis. 2024; 83(10): 1304-1314.
|
| [145] |
Krickau T, Naumann-Bartsch N, Aigner M, et al. CAR T-cell therapy rescues adolescent with rapidly progressive lupus nephritis from haemodialysis. Lancet. 2024; 403(10437): 1627-1630.
|
| [146] |
Li W, Deng C, Yang H, Wang G. The regulatory T cell in active systemic lupus erythematosus patients: a systemic review and meta-analysis. Front Immunol. 2019; 10: 159.
|
| [147] |
Raffin C, Vo LT, Bluestone JA. T(reg) cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020; 20(3): 158-172.
|
| [148] |
Doglio M, Ugolini A, Bercher-Brayer C, et al. Regulatory T cells expressing CD19-targeted chimeric antigen receptor restore homeostasis in systemic lupus erythematosus. Nat Commun. 2024; 15(1): 2542.
|
| [149] |
Schett G, Muller F, Taubmann J, et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat Rev Rheumatol. 2024; 20(9): 531-544.
|
| [150] |
Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018; 8(6): 1083-1089.
|
| [151] |
Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol. 2018; 51: 146-153.
|
| [152] |
Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine. 2020; 59: 102975.
|
| [153] |
Reighard SD, Cranert SA, Rangel KM, et al. Therapeutic targeting of follicular T cells with chimeric antigen receptor-expressing natural killer cells. Cell Rep Med. 2020; 1(1): 100003.
|
| [154] |
Hassan SH, Alshahrani MY, Saleh RO, et al. A new vision of the efficacy of both CAR-NK and CAR-T cells in treating cancers and autoimmune diseases. Med Oncol. 2024; 41(6): 127.
|
| [155] |
Di Matteo A, Bathon JM, Emery P. Rheumatoid arthritis. Lancet. 2023; 402(10416): 2019-2033.
|
| [156] |
Jacobi AM, Dorner T. Current aspects of anti-CD20 therapy in rheumatoid arthritis. Curr Opin Pharmacol. 2010; 10(3): 316-321.
|
| [157] |
Zhang B, Wang Y, Yuan Y, et al. In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Ann Rheum Dis. 2021; 80(2): 176-184.
|
| [158] |
Lidar M, Rimar D, David P, et al. CD-19 CAR-T cells for polyrefractory rheumatoid arthritis. Ann Rheum Dis. 2025; 84(2): 370-372.
|
| [159] |
Rosendahl AH, Schonborn K, Krieg T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J Med Sci. 2022; 38(3): 187-195.
|
| [160] |
Wojeck RK, Silva SG, Bailey DE,, et al. Pain and self-efficacy among patients with systemic sclerosis: a scleroderma patient-centered intervention network cohort study. Nurs Res. 2021; 70(5): 334-343.
|
| [161] |
Daoussis D, Melissaropoulos K, Sakellaropoulos G, et al. A multicenter, open-label, comparative study of B-cell depletion therapy with Rituximab for systemic sclerosis-associated interstitial lung disease. Semin Arthritis Rheum. 2017; 46(5): 625-631.
|
| [162] |
Bergmann C, Muller F, Distler JHW, et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann Rheum Dis. 2023; 82(8): 1117-1120.
|
| [163] |
Wang X, Wu X, Tan B, et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell. 2024; 187(18): 4890-4904 e9.
|
| [164] |
Auth J, Muller F, Volkl S, et al. CD19-targeting CAR T-cell therapy in patients with diffuse systemic sclerosis: a case series. Lancet Rheumatol. 2025; 7(2): e83-e93.
|
| [165] |
Zhang J, Xiao Y, Hu J, Liu S, Zhou Z, Xie L. Lipid metabolism in type 1 diabetes mellitus: pathogenetic and therapeutic implications. Front Immunol. 2022; 13: 999108.
|
| [166] |
Zhang L, Crawford F, Yu L, et al. Monoclonal antibody blocking the recognition of an insulin peptide-MHC complex modulates type 1 diabetes. Proc Natl Acad Sci U S A. 2014; 111(7): 2656-2661.
|
| [167] |
Zhang L, Sosinowski T, Cox AR, et al. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. J Autoimmun. 2019; 96: 50-58.
|
| [168] |
Kobayashi S, Thelin MA, Parrish HL, et al. A biomimetic five-module chimeric antigen receptor ((5M)CAR) designed to target and eliminate antigen-specific T cells. Proc Natl Acad Sci U S A. 2020; 117(46): 28950-28959.
|
| [169] |
Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes. 2005; 54(5): 1407-1414.
|
| [170] |
Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes. 2005; 54(1): 92-99.
|
| [171] |
Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, et al. Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care. 2012; 35(9): 1817-1820.
|
| [172] |
Bluestone JA, Buckner JH, Fitch M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015; 7(315): 315ra189.
|
| [173] |
Dong S, Hiam-Galvez KJ, Mowery CT, et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight. 2021; 6(18): e147474.
|
| [174] |
Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004; 199(11): 1467-1477.
|
| [175] |
Yang SJ, Singh AK, Drow T, et al. Pancreatic islet-specific engineered T(regs) exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models. Sci Transl Med. 2022; 14(665): eabn1716.
|
| [176] |
Tang Q, Henriksen KJ, Bi M, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004; 199(11): 1455-1465.
|
| [177] |
Tarbell KV, Petit L, Zuo X, et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med. 2007; 204(1): 191-201.
|
| [178] |
Tenspolde M, Zimmermann K, Weber LC, et al. Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun. 2019; 103: 102289.
|
| [179] |
Spanier JA, Fung V, Wardell CM, et al. Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. J Clin Invest. 2023; 133(18): e168601.
|
| [180] |
Liu XG, Hou Y, Hou M. How we treat primary immune thrombocytopenia in adults. J Hematol Oncol. 2023; 16(1): 4.
|
| [181] |
Cooper N, Ghanima W. Immune thrombocytopenia. N Engl J Med. 2019; 381(10): 945-955.
|
| [182] |
Li M, Zhang Y, Jiang N, et al. Anti-CD19 CAR T cells in refractory immune thrombocytopenia of SLE. N Engl J Med. 2024; 391(4): 376-378.
|
| [183] |
Trautmann-Grill K, von Bonin M, Georgi A, et al. Salvage treatment of multi-refractory primary immune thrombocytopenia with CD19 CAR T cells. Lancet. 2025; 405(10472): 25-28.
|
| [184] |
Bruner LP, White AM, Proksell S. Inflammatory bowel disease. Prim Care. 2023; 50(3): 411-427.
|
| [185] |
Yan JB, Luo MM, Chen ZY, He BH. The function and role of the Th17/Treg cell balance in inflammatory bowel disease. J Immunol Res. 2020; 2020: 8813558.
|
| [186] |
Kelsen JR, Russo P, Sullivan KE. Early-onset inflammatory bowel disease. Immunol Allergy Clin North Am. 2019; 39(1): 63-79.
|
| [187] |
Neurath MF, Sands BE, Rieder F. Cellular immunotherapies and immune cell depleting therapies in inflammatory bowel diseases: the next magic bullet? Gut. 2024; 74(1): 9-14.
|
| [188] |
Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999; 190(7): 995-1004.
|
| [189] |
Rubtsov YP, Rasmussen JP, Chi EY, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008; 28(4): 546-558.
|
| [190] |
Elinav E, Waks T, Eshhar Z. Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology. 2008; 134(7): 2014-2024.
|
| [191] |
Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther. 2014; 22(5): 1018-1028.
|
| [192] |
Cui Y, David M, Bouchareychas L, et al. IL23R-specific CAR Tregs for the treatment of Crohn's disease. J Crohns Colitis. 2025; 19(3): jjae135.
|
| [193] |
Shi M, Chu F, Jin T, Zhu J. Progress in treatment of neuromyelitis optica spectrum disorders (NMOSD): novel insights into therapeutic possibilities in NMOSD. CNS Neurosci Ther. 2022; 28(7): 981-991.
|
| [194] |
Bennett JL, Aktas O, Rees WA, et al. Association between B-cell depletion and attack risk in neuromyelitis optica spectrum disorder: an exploratory analysis from N-MOmentum, a double-blind, randomised, placebo-controlled, multicentre phase 2/3 trial. EBioMedicine. 2022; 86: 104321.
|
| [195] |
Qin C, Tian DS, Zhou LQ, et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. Signal Transduct Target Ther. 2023; 8(1): 5.
|
| [196] |
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol. 2024; 20(2): 84-98.
|
| [197] |
Granit V, Benatar M, Kurtoglu M, et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 2023; 22(7): 578-590.
|
| [198] |
Chahin N, Sahagian G, Feinberg MH, et al. Twelve-month follow-up of patients with generalized myasthenia gravis receiving BCMA-directed mRNA cell therapy. J medRxiv. 2024: 2024.01.03.24300770.
|
| [199] |
Schmidt E, Kasperkiewicz M, Joly P. Pemphigus. Lancet. 2019; 394(10201): 882-894.
|
| [200] |
Nayak V, Kini R, Rao PK, Shetty U. Pemphigus vulgaris. BMJ Case Rep. 2020; 13(5): e235410.
|
| [201] |
Ellebrecht CT, Bhoj VG, Nace A, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016; 353(6295): 179-184.
|
| [202] |
Lee J, Lundgren DK, Mao X, et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J Clin Invest. 2020; 130(12): 6317-6324.
|
| [203] |
Muller F, Boeltz S, Knitza J, et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet. 2023; 401(10379): 815-818.
|
| [204] |
Pecher AC, Hensen L, Klein R, et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA. 2023; 329(24): 2154-2162.
|
| [205] |
Reincke SM, von Wardenburg N, Homeyer MA, et al. Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells. Cell. 2023; 186(23): 5084-5097 e18.
|
| [206] |
Nicolai R, Merli P, Moran Alvarez P, et al. Autologous CD19-targeting CAR T cells in a patient with refractory juvenile dermatomyositis. Arthritis Rheumatol. 2024; 76(10): 1560-1565.
|
| [207] |
Fischbach F, Richter J, Pfeffer LK, et al. CD19-targeted chimeric antigen receptor T cell therapy in two patients with multiple sclerosis. Medicine. 2024; 5(6): 550-558 e2.
|
| [208] |
Mukhatayev Z, Dellacecca ER, Cosgrove C, et al. Antigen specificity enhances disease control by Tregs in vitiligo. Front Immunol. 2020; 11: 581433.
|
| [209] |
Le Poole IC, Stennett LS, Bonish BK, et al. Expansion of vitiligo lesions is associated with reduced epidermal CDw60 expression and increased expression of HLA-DR in perilesional skin. Br J Dermatol. 2003; 149(4): 739-748.
|
| [210] |
Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol. 2022; 80(25): 2361-2371.
|
| [211] |
Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016; 118(6): 1021-1040.
|
| [212] |
Maruyama K, Imanaka-Yoshida K. The pathogenesis of cardiac fibrosis: a review of recent progress. Int J Mol Sci. 2022; 23(5): 2617.
|
| [213] |
Fang L, Murphy AJ, Dart AM. A clinical perspective of anti-fibrotic therapies for cardiovascular disease. Front Pharmacol. 2017; 8: 186.
|
| [214] |
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020; 587(7835): 555-566.
|
| [215] |
Gonzalez A, Schelbert EB, Diez J, Butler J. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol. 2018; 71(15): 1696-1706.
|
| [216] |
Rurik JG, Tombacz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022; 375(6576): 91-96.
|
| [217] |
Tran E, Chinnasamy D, Yu Z, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013; 210(6): 1125-1135.
|
| [218] |
Wang LC, Lo A, Scholler J, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014; 2(2): 154-166.
|
| [219] |
Wang J, Du H, Xie W, et al. CAR-macrophage therapy alleviates myocardial ischemia-reperfusion injury. Circ Res. 2024; 135(12): 1161-1174.
|
| [220] |
Clemente WT, Carratala J. Why should quality metrics be used for infectious disease assessment, management and follow up in solid organ transplantation? Clin Microbiol Infect. 2021; 27(1): 12-15.
|
| [221] |
Heidt S, Claas FHJ. Transplantation in highly sensitized patients: challenges and recommendations. Expert Rev Clin Immunol. 2018; 14(8): 673-679.
|
| [222] |
Sapir-Pichhadze R, Tinckam KJ, Laupacis A, Logan AG, Beyene J, Kim SJ. Immune Sensitization and mortality in wait-listed kidney transplant candidates. J Am Soc Nephrol. 2016; 27(2): 570-578.
|
| [223] |
Carroll R, Coates PT. Does rituximab help in HLA desensitization for kidney transplantation? Kidney Int. 2015; 87(2): 277-279.
|
| [224] |
Noble J, Metzger A, Daligault M, et al. Immortal time-bias-corrected survival of highly sensitized patients and HLA-desensitized kidney transplant recipients. Kidney Int Rep. 2021; 6(10): 2629-2638.
|
| [225] |
Jarmi T, Luo Y, Attieh RM, et al. CAR T-cell therapy-paving the way for sensitized kidney transplant patients. Kidney Int. 2024; 105(5): 1124-1129.
|
| [226] |
Copelan EA, Chojecki A, Lazarus HM, Avalos BR. Allogeneic hematopoietic cell transplantation; the current renaissance. Blood Rev. 2019; 34: 34-44.
|
| [227] |
Granot N, Storb R. History of hematopoietic cell transplantation: challenges and progress. Haematologica. 2020; 105(12): 2716-2729.
|
| [228] |
Ukyo N, Hori T, Yanagita S, Ishikawa T, Uchiyama T. Costimulation through OX40 is crucial for induction of an alloreactive human T-cell response. Immunology. 2003; 109(2): 226-231.
|
| [229] |
Mo F, Watanabe N, Omdahl KI, et al. Engineering T cells to suppress acute GVHD and leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood. 2023; 141(10): 1194-1208.
|
| [230] |
Pierini A, Iliopoulou BP, Peiris H, et al. T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight. 2017; 2(20): e92865.
|
| [231] |
Dawson NA, Lamarche C, Hoeppli RE, et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight. 2019; 4(6): e123672.
|
| [232] |
Berntorp E, Fischer K, Hart DP, et al. Haemophilia. Nat Rev Dis Primers. 2021; 7(1): 45.
|
| [233] |
Scott DW. Why do immunology research in hemophilia? Cell Immunol. 2016; 301: 1.
|
| [234] |
Gouw SC, van den Berg HM, Oldenburg J, et al. F8 gene mutation type and inhibitor development in patients with severe hemophilia A: systematic review and meta-analysis. Blood. 2012; 119(12): 2922-2934.
|
| [235] |
Parvathaneni K, Scott DW. Engineered FVIII-expressing cytotoxic T cells target and kill FVIII-specific B cells in vitro and in vivo. Blood Adv. 2018; 2(18): 2332-2340.
|
| [236] |
Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases. Cell Res. 2020; 30(6): 465-474.
|
| [237] |
Yoon J, Schmidt A, Zhang AH, Konigs C, Kim YC, Scott DW. FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B-cell responses to FVIII. Blood. 2017; 129(2): 238-245.
|
| [238] |
Pohl AP, Venkatesha SH, Zhang AH, Scott DW. Suppression of FVIII-specific memory B cells by chimeric BAR receptor-engineered natural regulatory T cells. Front Immunol. 2020; 11: 693.
|
| [239] |
Zhang AH, Yoon J, Kim YC, Scott DW. Targeting antigen-specific B cells using antigen-expressing transduced regulatory T cells. J Immunol. 2018; 201(5): 1434-1441.
|
| [240] |
Fu RY, Chen AC, Lyle MJ, Chen CY, Liu CL, Miao CH. CD4(+) T cells engineered with FVIII-CAR and murine Foxp3 suppress anti-factor VIII immune responses in hemophilia a mice. Cell Immunol. 2020; 358: 104216.
|
| [241] |
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol. 2022; 19(10): 619-636.
|
| [242] |
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997; 88(5): 593-602.
|
| [243] |
Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011; 479(7374): 547-551.
|
| [244] |
Riddiford-Harland DL, Steele JR, Cliff DP, Okely AD, Morgan PJ, Baur LA. Does participation in a physical activity program impact upon the feet of overweight and obese children? J Sci Med Sport. 2016; 19(1): 51-55.
|
| [245] |
Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008; 134(4): 657-667.
|
| [246] |
He S, Sharpless NE. Senescence in health and disease. Cell. 2017; 169(6): 1000-1011.
|
| [247] |
Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007; 130(2): 223-233.
|
| [248] |
Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479(7372): 232-236.
|
| [249] |
Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017; 169(1): 132-147 e16.
|
| [250] |
Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016; 354(6311): 472-477.
|
| [251] |
Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017; 21: 21-28.
|
| [252] |
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018; 24(8): 1246-1256.
|
| [253] |
Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020; 583(7814): 127-132.
|
| [254] |
Sagiv A, Burton DG, Moshayev Z, et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging (Albany NY). 2016; 8(2): 328-344.
|
| [255] |
Yang D, Sun B, Li S, et al. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci Transl Med. 2023; 15(709): eadd1951.
|
| [256] |
Deng Y, Kumar A, Xie K, et al. Targeting senescent cells with NKG2D-CAR T cells. Cell Death Discov. 2024; 10(1): 217.
|
| [257] |
Suda M, Shimizu I, Katsuumi G, et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat Aging. 2021; 1(12): 1117-1126.
|
| [258] |
Ntontsi P, Photiades A, Zervas E, Xanthou G, Samitas K. Genetics and epigenetics in asthma. Int J Mol Sci. 2021; 22(5): 2412.
|
| [259] |
Gans MD, Gavrilova T. Understanding the immunology of asthma: pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr Respir Rev. 2020; 36: 118-127.
|
| [260] |
Buhl R, Humbert M, Bjermer L, et al. Severe eosinophilic asthma: a roadmap to consensus. Eur Respir J. 2017; 49(5): 1700634.
|
| [261] |
Theiler A, Barnthaler T, Platzer W, et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival. J Allergy Clin Immunol. 2019; 144(3): 764-776.
|
| [262] |
Chen S, Chen G, Xu F, et al. Treatment of allergic eosinophilic asthma through engineered IL-5-anchored chimeric antigen receptor T cells. Cell Discov. 2022; 8(1): 80.
|
| [263] |
Jin G, Liu Y, Wang L, et al. A single infusion of engineered long-lived and multifunctional T cells confers durable remission of asthma in mice. Nat Immunol. 2024; 25(6): 1059-1072.
|
| [264] |
Feigin VL, Vos T, Nichols E, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020; 19(3): 255-265.
|
| [265] |
Rao RV, Subramaniam KG, Gregory J, et al. Rationale for a multi-factorial approach for the reversal of cognitive decline in Alzheimer's disease and MCI: a review. Int J Mol Sci. 2023; 24(2): 1659.
|
| [266] |
Passeri E, Elkhoury K, Morsink M, et al. Alzheimer's disease: treatment strategies and their limitations. Int J Mol Sci. 2022; 23(22): 13954.
|
| [267] |
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer's disease. N Engl J Med. 2023; 388(1): 9-21.
|
| [268] |
Budd Haeberlein S, Aisen PS, Barkhof F, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer's disease. J Prev Alzheimers Dis. 2022; 9(2): 197-210.
|
| [269] |
Dansokho C, Ait Ahmed D, Aid S, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain. 2016; 139(pt 4): 1237-1251.
|
| [270] |
Saetzler V, Riet T, Schienke A, et al. Development of beta-amyloid-specific CAR-Tregs for the treatment of Alzheimer's disease. Cells. 2023; 12(16): 2115.
|
| [271] |
Yeapuri P, Machhi J, Lu Y, et al. Amyloid-beta specific regulatory T cells attenuate Alzheimer's disease pathobiology in APP/PS1 mice. Mol Neurodegener. 2023; 18(1): 97.
|
| [272] |
Badr M, McFleder RL, Wu J, et al. Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-alpha-synuclein Parkinson's disease mice. J Neuroinflamm. 2022; 19(1): 319.
|
| [273] |
Park TY, Jeon J, Lee N, et al. Co-transplantation of autologous T(reg) cells in a cell therapy for Parkinson's disease. Nature. 2023; 619(7970): 606-615.
|
| [274] |
Yan P, Kim KW, Xiao Q, et al. Peripheral monocyte-derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer's disease. J Clin Invest. 2022; 132(11): e152565.
|
| [275] |
Kim AB, Xiao Q, Yan P, et al. Chimeric antigen receptor macrophages target and resorb amyloid plaques. JCI Insight. 2024; 9(6): e175015.
|
| [276] |
Zhang W, Li S, Long J, et al. Novel CAR T-cell therapies for relapsed/refractory B-cell malignancies: latest updates from 2023 ASH annual meeting. Exp Hematol Oncol. 2024; 13(1): 43.
|
| [277] |
Gu T, Zhu M, Huang H, Hu Y. Relapse after CAR-T cell therapy in B-cell malignancies: challenges and future approaches. J Zhejiang Univ Sci B. 2022; 23(10): 793-811.
|
| [278] |
Ohno R, Nakamura A. Advancing autoimmune rheumatic disease treatment: CAR-T cell therapies - evidence, safety, and future directions. Semin Arthritis Rheum. 2024; 67: 152479.
|
| [279] |
De Marco RC, Monzo HJ, Ojala PM. CAR T cell therapy: a versatile living drug. Int J Mol Sci. 2023; 24(7): 6300.
|
| [280] |
Jaccard A, Wyss T, Maldonado-Perez N, et al. Reductive carboxylation epigenetically instructs T cell differentiation. Nature. 2023; 621(7980): 849-856.
|
| [281] |
Chan JD, Scheffler CM, Munoz I, et al. FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy. Nature. 2024; 629(8010): 201-210.
|
| [282] |
Rakhshandehroo T, Mantri SR, Moravej H, et al. A CAR enhancer increases the activity and persistence of CAR T cells. Nat Biotechnol. 2024. Online ahead of print.
|
| [283] |
Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021; 21(3): 145-161.
|
| [284] |
Gust J, Taraseviciute A, Turtle CJ. Neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs. 2018; 32(12): 1091-1101.
|
| [285] |
Bupha-Intr O, Haeusler G, Chee L, Thursky K, Slavin M, Teh B. CAR-T cell therapy and infection: a review. Expert Rev Anti Infect Ther. 2021; 19(6): 749-758.
|
| [286] |
Zhang W, Chen Y, Zhao Z, et al. Adoptive T(reg) therapy with metabolic intervention via perforated microneedles ameliorates psoriasis syndrome. Sci Adv. 2023; 9(20): eadg6007.
|
| [287] |
Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023; 619(7971): 707-715.
|
| [288] |
Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stuve O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord. 2018; 11: 1756286418761697.
|
| [289] |
Tian DS, Qin C, Dong MH, et al. B cell lineage reconstitution underlies CAR-T cell therapeutic efficacy in patients with refractory myasthenia gravis. EMBO Mol Med. 2024; 16(4): 966-987.
|
| [290] |
Zeng F, Zhang J, Jin X, et al. Effect of CD38 on B-cell function and its role in the diagnosis and treatment of B-cell-related diseases. J Cell Physiol. 2022; 237(7): 2796-2807.
|
| [291] |
Ostendorf L, Burns M, Durek P, et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N Engl J Med. 2020; 383(12): 1149-1155.
|
| [292] |
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol. 2024; 24(11): 830-845.
|
| [293] |
Brudno JN, Somerville RP, Shi V, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016; 34(10): 1112-1121.
|
| [294] |
Brentjens RJ, Riviere I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011; 118(18): 4817-4828.
|
| [295] |
North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med. 1982; 155(4): 1063-1074.
|
| [296] |
Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005; 202(7): 907-912.
|
| [297] |
Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother. 2012; 61(8): 1155-1167.
|
| [298] |
Lickefett B, Chu L, Ortiz-Maldonado V, et al. Lymphodepletion - an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front Immunol. 2023; 14: 1303935.
|
| [299] |
Taubmann J, Muller F, Yalcin Mutlu M, et al. CD19 chimeric antigen receptor T cell treatment: unraveling the role of B cells in systemic lupus erythematosus. Arthritis Rheumatol. 2024; 76(4): 497-504.
|
| [300] |
Ghilardi G, Paruzzo L, Svoboda J, et al. Bendamustine lymphodepletion before axicabtagene ciloleucel is safe and associates with reduced inflammatory cytokines. Blood Adv. 2024; 8(3): 653-666.
|
| [301] |
Choi G, Shin G, Bae S. Price and prejudice? The value of chimeric antigen receptor (CAR) T-cell therapy. Int J Environ Res Public Health. 2022; 19(19): 12366.
|
| [302] |
Bertoletti A, Tan AT. Challenges of CAR- and TCR-T cell-based therapy for chronic infections. J Exp Med. 2020; 217(5): e20191663.
|
| [303] |
Riva L, Petrini C. A few ethical issues in translational research for gene and cell therapy. J Transl Med. 2019; 17(1): 395.
|
| [304] |
Faiman B, Khouri J, Williams LS, Anwer F. Ethical challenges in CAR-T slot allocation. Transplant Cell Ther. 2023; 29(4): 215-216.
|
| [305] |
Kourelis T, Bansal R, Berdeja J, et al. Ethical challenges with multiple myeloma BCMA chimeric antigen receptor T cell slot allocation: a multi-institution experience. Transplant Cell Ther. 2023; 29(4): 255-258.
|
| [306] |
Bell JAH, Jeffries GA, Chen CI. Mitigating inequity: ethically prioritizing patients for CAR T-cell therapy. Blood. 2023; 142(15): 1263-1270.
|
| [307] |
Chong EA, Alanio C, Svoboda J, et al. Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood. 2022; 139(7): 1026-1038.
|
| [308] |
Hirayama AV, Kimble EL, Wright JH, et al. Timing of anti-PD-L1 antibody initiation affects efficacy/toxicity of CD19 CAR T-cell therapy for large B-cell lymphoma. Blood Adv. 2024; 8(2): 453-467.
|
| [309] |
Park JH, Nath K, Devlin SM, et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat Med. 2023; 29(7): 1710-1717.
|
| [310] |
Wisskirchen K, Kah J, Malo A, et al. T cell receptor grafting allows virological control of hepatitis B virus infection. J Clin Invest. 2019; 129(7): 2932-2945.
|
| [311] |
Merkt W, Freitag M, Claus M, et al. Third-generation CD19.CAR-T cell-containing combination therapy in Scl70+ systemic sclerosis. Ann Rheum Dis. 2024; 83(4): 543-546.
|
| [312] |
Lyman GH, Nguyen A, Snyder S, Gitlin M, Chung KC. Economic evaluation of chimeric antigen receptor T-cell therapy by site of care among patients with relapsed or refractory large B-cell lymphoma. JAMA Netw Open. 2020; 3(4): e202072.
|
| [313] |
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res. 2023; 11(1): 49.
|
| [314] |
Lei W, Xie M, Jiang Q, et al. Treatment-related adverse events of chimeric antigen receptor T-cell (CAR T) in clinical trials: a systematic review and meta-analysis. Cancers (Basel). 2021; 13(15): 3912.
|
| [315] |
Graham C, Jozwik A, Pepper A, Benjamin R. Allogeneic CAR-T cells: more than ease of access? Cells. 2018; 7(10): 155.
|
| [316] |
Zhang Y, Li P, Fang H, Wang G, Zeng X. Paving the way towards universal chimeric antigen receptor therapy in cancer treatment: current landscape and progress. Front Immunol. 2020; 11: 604915.
|
| [317] |
Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res. 2022; 10(1): 12.
|
| [318] |
Pan K, Farrukh H, Chittepu V, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 2022; 41(1): 119.
|
| [319] |
Lu L, Xie M, Yang B, Zhao WB, Cao J. Enhancing the safety of CAR-T cell therapy: synthetic genetic switch for spatiotemporal control. Sci Adv. 2024; 10(8): eadj6251.
|
| [320] |
Wu J, Wu W, Zhou B, Li B. Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol. 2024; 42(2): 228-240.
|
| [321] |
Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in universal CAR-T cell therapy. Front Immunol. 2021; 12: 744823.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.