The FBP1-TP53-NRF2 metabolic switch in metabolic dysfunction-associated steatohepatitis-hepatocellular carcinoma progression and senescence reversal

Yahui Zhu , Donglin Wei , Michael Karin , Li Gu

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (4) : e70293

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (4) : e70293 DOI: 10.1002/ctm2.70293
INVITED LETTER

The FBP1-TP53-NRF2 metabolic switch in metabolic dysfunction-associated steatohepatitis-hepatocellular carcinoma progression and senescence reversal

Author information +
History +
PDF

Cite this article

Download citation ▾
Yahui Zhu, Donglin Wei, Michael Karin, Li Gu. The FBP1-TP53-NRF2 metabolic switch in metabolic dysfunction-associated steatohepatitis-hepatocellular carcinoma progression and senescence reversal. Clinical and Translational Medicine, 2025, 15(4): e70293 DOI:10.1002/ctm2.70293

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol. 2025; 19(2): 275-294.

[2]

Wang X, Zhang L, Dong B. Molecular mechanisms in MASLD/MASH-related HCC. Hepatology. 2024: 10.1097

[3]

Gu L, Zhu Y, Watari K, et al. Fructose-1,6-bisphosphatase is a nonenzymatic safety valve that curtails AKT activation to prevent insulin hyperresponsiveness. Cell Metab. 2023; 35(6): 1009-1021.

[4]

Liu GM, Li Q, Zhang PF, et al. Restoration of FBP1 suppressed Snail-induced epithelial to mesenchymal transition in hepatocellular carcinoma. Cell Death Dis. 2018; 9(11): 1132.

[5]

Gu L, Zhu Y, Nandi SP, et al. FBP1 controls liver cancer evolution from senescent MASH hepatocytes. Nature. 2025; 637(8045): 461-469.

[6]

Ogawara Y, Kishishita S, Obata T, et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002; 277(24): 21843-21850.

[7]

Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011; 479(7374): 547-551.

[8]

Shalapour S, Lin XJ, Bastian IN, et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature. 2017; 551(7680): 340-345.

[9]

Ray K. MASH-induced senescence and liver cancer. Nat Rev Gastroenterol Hepatol. 2025; 22(3): 152.

[10]

Ogrodnik M, Miwa S, Tchkonia T, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017; 8: 15691.

[11]

Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol. 2024; 21(7): 477-492.

[12]

Reimann M, Lee S, Schmitt CA. Cellular senescence: neither irreversible nor reversible. J Exp Med. 2024; 221(4): e20232136.

[13]

He G, Dhar D, Nakagawa H, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013; 155(2): 384-396.

[14]

Carlessi R, Denisenko E, Boslem E, et al. Single-nucleus RNA sequencing of pre-malignant liver reveals disease-associated hepatocyte state with HCC prognostic potential. Cell Genom. 2023; 3(5): 100301.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/