Aberrant DNA methylation of genes regulating CD4+ T cell HIV-1 reservoir in women with HIV

Ke Xu , Xinyu Zhang , Kesava Asam , Bryan C. Quach , Grier P. Page , Deborah Konkle-Parker , Claudia Martinez , Cecile D. Lahiri , Elizabeth F. Topper , Mardge H. Cohen , Seble G. Kassaye , Jack DeHovitz , Mark H. Kuniholm , Nancie M. Archin , Amir Valizadeh , Phyllis C. Tien , Vincent C. Marconi , Dana B. Hancock , Eric O. Johnson , Bradley E. Aouizerat

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70267

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70267 DOI: 10.1002/ctm2.70267
RESEARCH ARTICLE

Aberrant DNA methylation of genes regulating CD4+ T cell HIV-1 reservoir in women with HIV

Author information +
History +
PDF

Abstract

•Study involved 427 women with HIV.

•Identified 245 aberrant DNA methylation sites and 85 methylation regions in CD4+ T cells linked to the HIV-1 reservoir.

•Highlighted genes are involved in viral replication, immune defence, and host genome integration.

•Findings suggest potential molecular targets for eradication strategies.

Cite this article

Download citation ▾
Ke Xu, Xinyu Zhang, Kesava Asam, Bryan C. Quach, Grier P. Page, Deborah Konkle-Parker, Claudia Martinez, Cecile D. Lahiri, Elizabeth F. Topper, Mardge H. Cohen, Seble G. Kassaye, Jack DeHovitz, Mark H. Kuniholm, Nancie M. Archin, Amir Valizadeh, Phyllis C. Tien, Vincent C. Marconi, Dana B. Hancock, Eric O. Johnson, Bradley E. Aouizerat. Aberrant DNA methylation of genes regulating CD4+ T cell HIV-1 reservoir in women with HIV. Clinical and Translational Medicine, 2025, 15(3): e70267 DOI:10.1002/ctm2.70267

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bruner KM, Cohn LB. HIV-1 reservoir dynamics in CD4+ T cells. Curr Opin HIV AIDS. 2019;14:108-114.

[2]

Board NL, Moskovljevic M, Wu F, Siliciano RF, Siliciano JD. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol. 2022;22:499-512.

[3]

Anderson EM, Maldarelli F. The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology. 2018;15:71.

[4]

Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology. 2024;21:6.

[5]

Li JZ, et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS. 2016;30:343-353.

[6]

Siliciano JD, Kajdas J, Finzi D, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9:727-728.

[7]

Cho A, Gaebler C, Olveira T, et al. Longitudinal clonal dynamics of HIV-1 latent reservoirs measured by combination quadruplex polymerase chain reaction and sequencing. Proc Natl Acad Sci USA. 2022;119.

[8]

Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med. 2014;20:425-429.

[9]

Laird GM, Bullen CK, Rosenbloom DIS, et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest. 2015;125:1901-1912.

[10]

Ziegler S, Altfeld M. Sex differences in HIV-1-mediated immunopathology. Curr Opin HIV AIDS. 2016;11:209-215.

[11]

Farzadegan H, Hoover DR, Astemborski J, et al. Sex differences in HIV-1 viral load and progression to AIDS. Lancet. 1998;352:1510-1514.

[12]

Sterling TR, Vlahov D, Astemborski J, et al. Initial plasma HIV-1 RNA levels and progression to AIDS in women and men. N Engl J Med. 2001;344:720-725.

[13]

Gilmore W, Weiner LP, Correale J. Effect of estradiol on cytokine secretion by proteolipid protein-specific T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol. 1997;158:446-451.

[14]

Luo CY, Wang L, Sun C, Li DJ. Estrogen enhances the functions of CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol. 2011;8:50-58.

[15]

Einkauf KB, Osborn MR, Gao Ce, et al. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell. 2022;185:266-282.

[16]

Jefferys SR, Burgos SD, Peterson JJ, et al. Epigenomic characterization of latent HIV infection identifies latency regulating transcription factors. PLoS Pathog. 2021;17;e1009346.

[17]

Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E. Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog. 2009;5;e1000495.

[18]

Boltz VF, et al. CpG methylation profiles of HIV-1 pro-viral DNA in individuals on ART. Viruses. 2021:13.

[19]

Blazkova J, Murray D, Justement JS, et al. Paucity of HIV DNA methylation in latently infected, resting CD4+ T cells from infected individuals receiving antiretroviral therapy. J Virol. 2012;86:5390-5392.

[20]

Mantovani N, Defelicibus A, da Silva IT, et al. Latency-associated DNA methylation patterns among HIV-1 infected individuals with distinct disease progression courses or antiretroviral virologic response. Sci Rep. 2021;11:22993.

[21]

Friedman J, Cho W-K, Chu CK, et al. Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J Virol. 2011;85:9078-9089.

[22]

Huang J, Wang F, Argyris E, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med. 2007;13:1241-1247.

[23]

Shukla A, Ramirez NP, D’Orso I. HIV-1 proviral transcription and latency in the new era. Viruses. 2020:12.

[24]

Bruner KM, Murray AJ, Pollack RA, et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med. 2016;22:1043-1049.

[25]

Ho Ya-C, Shan L, Hosmane NN, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155:540-551.

[26]

Pollack RA, Jones RB, Pertea M, et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe. 2017;21:494-506.

[27]

Duette G, et al. The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. J Clin Invest. 2022:132.

[28]

Sieg SF. Persistent inflammation in treated HIV disease. J Infect Dis. 2016;214(Suppl 2):S43.

[29]

Dirajlal-Fargo S, Funderburg N. HIV and cardiovascular disease: the role of inflammation. Curr Opin HIV AIDS. 2022;17:286-292.

[30]

Snell LM, McGaha TL, Brooks DG. Type I interferon in chronic virus infection and cancer. Trends Immunol. 2017;38:542-557.

[31]

Barkan SE, et al. The women’s interagency HIV study. WIHS Collaborative Study Group. 1998;9:117-125.

[32]

Adimora AA, Ramirez C, Benning L, et al. Cohort profile: the women’s interagency HIV study (WIHS). Int J Epidemiol. 2018;47:393-394i.

[33]

D’Souza G, Bhondoekhan F, Benning L, et al. Characteristics of the MACS/WIHS combined cohort study: opportunities for research on aging with HIV in the longest US observational study of HIV. Am J Epidemiol. 2021;190:1457-1475.

[34]

Aouizerat BE, Garcia JN, Domingues CV, et al. Frequent cocaine use is associated with larger HIV latent reservoir size. J Acquir Immune Defic Syndr. 2024.

[35]

Shu C, Zhang X, Aouizerat BE, Xu K. Comparison of methylation capture sequencing and Infinium MethylationEPIC array in peripheral blood mononuclear cells. Epigenetics Chromatin. 2020;13:51.

[36]

Gautier VW, Gu L, O’Donoghue N, et al. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology. 2009;6:47.

[37]

Rumlová M, Křížová I, Keprová A, et al. HIV-1 protease-induced apoptosis. Retrovirology. 2014;11:37.

[38]

Jurczyszak D, Manganaro L, Buta S, et al. ISG15 deficiency restricts HIV-1 infection. PLoS Pathog. 2022;18;e1010405.

[39]

Heddar A, Ogur C, Da Costa S, et al. Genetic landscape of a large cohort of primary ovarian insufficiency: new genes and pathways and implications for personalized medicine. EBioMedicine. 2022;84:104246.

[40]

Zhang D, et al. Comprehensive analysis of the expression and prognostic value of LMAN2 in HER2+ breast cancer. J Immunol Res. 2022;2022:7623654.

[41]

Kok YL, et al. HIV-1 integration sites in CD4+ T cells during primary, chronic, and late presentation of HIV-1 infection. JCI Insight. 2021:6.

[42]

Wagner TA, McLaughlin S, Garg K, et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 2014;345:570-573.

[43]

Maldarelli F, Wu X, Su L, Simonetti FR, et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 2014;345:179-183.

[44]

Bergstresser S, Kulpa DA. TGF-beta signaling supports HIV latency in a memory CD4+ T cell based in vitro model. Methods Mol Biol. 2022;2407:69-79.

[45]

Ruggiero A, De Spiegelaere W, Cozzi-Lepri A, et al. During stably suppressive antiretroviral therapy integrated HIV-1 DNA load in peripheral blood is associated with the frequency of CD8 cells expressing HLA-DR/DP/DQ. EBioMedicine. 2015;2:1153-1159.

[46]

Vallejo A. HIV-1 reservoir association with immune activation. EBioMedicine. 2015;2:1020-1021.

[47]

Huang Y, Dhummakupt A, Khetan P, et al. Immune activation and exhaustion marker expression on T-cell subsets in ART-treated adolescents and young adults with perinatal HIV-1 infection as correlates of viral persistence. Front Immunol. 2023;14:1007626.

[48]

Utay NS, Douek DC. Interferons and HIV infection: the good, the bad, and the ugly. Pathog Immun. 2016;1:107-116.

[49]

Cicala C, Arthos J, Selig SM, et al. HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc Natl Acad Sci USA. 2002;99:9380-9385.

[50]

Galey D, Becker K, Haughey N, et al. Differential transcriptional regulation by human immunodeficiency virus type 1 and gp120 in human astrocytes. J Neurovirol. 2003;9:358-371.

[51]

Brass AL, Dykxhoorn DM, Benita Y, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008;319:921-926.

[52]

Zhou H, Xu M, Huang Q, et al. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe. 2008;4:495-504.

[53]

de Armas LR, et al. The effect of JAK1/2 inhibitors on HIV reservoir using primary lymphoid cell model of HIV latency. Front Immunol. 2021;12:720697.

[54]

Kim K-C, Lee S, Son J, et al. Identification of novel genes associated with HIV-1 latency by analysis of histone modifications. Hum Genomics. 2017;11:9.

[55]

Wang J, Blevins T, Podicheti R, et al. Mutation of Arabidopsis SMC4 identifies condensin as a corepressor of pericentromeric transposons and conditionally expressed genes. Genes Dev. 2017;31:1601-1614.

[56]

Wei-Shan H, Amit VC, Clarke DJ, Cell cycle regulation of condensin Smc4. Oncotarget. 2019;10:263-276.

[57]

Hoang TT, Lee Y, McCartney DL, et al. Comprehensive evaluation of smoking exposures and their interactions on DNA methylation. EBioMedicine. 2024;100:104956.

[58]

Zhang X, Hu Y, Aouizerat BE, et al. Machine learning selected smoking-associated DNA methylation signatures that predict HIV prognosis and mortality. Clinical Epigenetics. 2018;10:155.

[59]

Blankson JN, Finzi D, Pierson TC, et al. Biphasic decay of latently infected CD4+ T cells in acute human immunodeficiency virus type 1 infection. J Infect Dis. 2000;182:1636-1642.

[60]

Bruner KM, Wang Z, Simonetti FR, et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature. 2019;566:120-125.

[61]

Wreczycka K, Gosdschan A, Yusuf D, Grüning B, Assenov Y, Akalin A. Strategies for analyzing bisulfite sequencing data. J Biotechnol. 2017;261:105-115.

[62]

Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics. 2011;27:1571-1572.

[63]

Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.

[64]

Jaffe AE, Murakami P, Lee H, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol. 2012;41:200-209.

[65]

Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. ACAT: a fast and powerful p value combination method for rare-variant analysis in sequencing studies. Am J Hum Genet. 2019;104:410-421.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/