The novel GSDMD inhibitor GI-Y2 exerts antipyroptotic effects to reduce atherosclerosis

Xiaoxi Fan , Zhenfeng Cheng , Ruiyin Shao , Keke Ye , Xudong Chen , Xueli Cai , Shanshan Dai , Zhixuan Tang , Si Shi , Wenyuan Zheng , Weijian Huang , Jibo Han , Bozhi Ye

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70263

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70263 DOI: 10.1002/ctm2.70263
RESEARCH ARTICLE

The novel GSDMD inhibitor GI-Y2 exerts antipyroptotic effects to reduce atherosclerosis

Author information +
History +
PDF

Abstract

•We preliminarily confirmed GI-Y2 as a novel inhibitor of GSDMD via structure-based virtual screening and pharmacological validation.

•GI-Y2 directly interacts with GSDMD and reduces the membrane binding of GSDMD-N via the Arg10 residue.

•GI-Y2 inhibits the formation of atherosclerotic plaques by targeting GSDMD and GI-Y2 reduces pyroptosis and macrophage infiltration in atherosclerosis.

•We constructed macrophage membrane-coated GI-Y2 nanoparticles to enhance the targeting of GI-Y2 to macrophages in atheromatous plaques and demonstrated its vascular protective effect in vivo.

Keywords

atherosclerosis / gasdermin D / macrophage / pyroptosis

Cite this article

Download citation ▾
Xiaoxi Fan,Zhenfeng Cheng,Ruiyin Shao,Keke Ye,Xudong Chen,Xueli Cai,Shanshan Dai,Zhixuan Tang,Si Shi,Wenyuan Zheng,Weijian Huang,Jibo Han,Bozhi Ye. The novel GSDMD inhibitor GI-Y2 exerts antipyroptotic effects to reduce atherosclerosis. Clinical and Translational Medicine, 2025, 15(3): e70263 DOI:10.1002/ctm2.70263

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: a report from the American Heart Association. Circulation. 2019;139(10):e56-e528.

[2]

Dickhout JG, Basseri S, Austin RC. Macrophage function and its impact on atherosclerotic lesion composition, progression, and stability: the good, the bad, and the ugly. Arterioscler Thromb Vasc Biol. 2008;28(8):1413-1415.

[3]

He X, Fan X, Bai B, et al. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res. 2021;165:105447.

[4]

Neels JG, Gollentz C, Chinetti G. Macrophage death in atherosclerosis: potential role in calcification. Front Immunol. 2023;14:1215612.

[5]

Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-665.

[6]

Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666-671.

[7]

Dai S, Ye B, Zhong L, et al. GSDMD mediates LPS-induced septic myocardial dysfunction by regulating ROS-dependent NLRP3 inflammasome activation. Front Cell Dev Biol. 2021;9:779432.

[8]

Ye B, Shi X, Xu J, et al. Gasdermin D mediates doxorubicin-induced cardiomyocyte pyroptosis and cardiotoxicity via directly binding to doxorubicin and changes in mitochondrial damage. Transl Res. 2022;248:36-50.

[9]

Han J, Dai S, Zhong L, et al. GSDMD (Gasdermin D) mediates pathological cardiac hypertrophy and generates a feed-forward amplification cascade via mitochondria-STING (stimulator of interferon genes) axis. Hypertension. 2022;79(11):2505-2518.

[10]

Han B, Xu J, Shi X, et al. DL-3-n-butylphthalide attenuates myocardial hypertrophy by targeting gasdermin D and inhibiting gasdermin D mediated inflammation. Front Pharmacol. 2021;12:688140.

[11]

Fang Z, Wu G, Sheng J, et al. Gasdermin D affects aortic vascular smooth muscle cell pyroptosis and Ang II-induced vascular remodeling. Heliyon. 2023;9(6):e16619.

[12]

Ye B, Fan X, Fang Z, et al. Macrophage-derived GSDMD promotes abdominal aortic aneurysm and aortic smooth muscle cells pyroptosis. Int Immunopharmacol. 2024;128:111554.

[13]

Fan X, Han J, Zhong L, et al. Macrophage-derived GSDMD plays an essential role in atherosclerosis and cross talk between macrophages via the mitochondria-STING-IRF3/NF-κB axis. Arterioscler Thromb Vasc Biol. 2024;44(6):1365-1378.

[14]

Jiang M, Sun X, Liu S, et al. Caspase-11-gasdermin D-mediated pyroptosis is involved in the pathogenesis of atherosclerosis. Front Pharmacol. 2021;12:657486.

[15]

Puylaert P, Van Praet M, Vaes F, et al. Gasdermin D deficiency limits the transition of atherosclerotic plaques to an inflammatory phenotype in ApoE knock-out mice. Biomedicines. 2022;10(5):1171.

[16]

Huang B, Zou Z, Li Y, et al. Gasdermin D-mediated pyroptosis promotes the development of atherosclerosis. Lab Invest. 2024;104(4):100337.

[17]

Hsu CC, Fidler TP, Kanter JE, et al. Hematopoietic NLRP3 and AIM2 inflammasomes promote diabetes-accelerated atherosclerosis, but increased necrosis is independent of pyroptosis. Diabetes. 2023;72(7):999-1011.

[18]

Opoku E, Traughber CA, Zhang D, et al. Gasdermin D mediates inflammation-induced defects in reverse cholesterol transport and promotes atherosclerosis. Front Cell Dev Biol. 2021;9:715211.

[19]

Zhong L, Han J, Fan X, et al. Novel GSDMD inhibitor GI-Y1 protects heart against pyroptosis and ischemia/reperfusion injury by blocking pyroptotic pore formation. Basic Res Cardiol. 2023;118(1):40.

[20]

Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinf. 2009;10:168.

[21]

Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF. AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput Biol. 2015;11(12):e1004586.

[22]

Han J, Shi X, Zheng Z, et al. Schisandrin B protects against angiotensin II-induced endotheliocyte deficits by targeting Keap1 and activating Nrf2 pathway. Drug Des Devel Ther. 2018;12:3985-3997.

[23]

Fu W, Zhang M, Liao J, et al. Discovery of a novel androgen receptor antagonist manifesting evidence to disrupt the dimerization of the ligand-binding domain via attenuating the hydrogen-bonding network between the two monomers. J Med Chem. 2021;64(23):17221-17238.

[24]

Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA. 2009;106(51):21984-21989.

[25]

Han J, Shi X, Xu J, et al. DL-3-n-butylphthalide prevents oxidative stress and atherosclerosis by targeting Keap-1 and inhibiting Keap-1/Nrf-2 interaction. Eur J Pharm Sci. 2022;172:106164.

[26]

Xia S, Zhang Z, Magupalli VG, et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 2021;593(7860):607-611.

[27]

Liu Z, Wang C, Yang J, et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity. 2019;51(1):43-49.e44.

[28]

Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709-721.

[29]

Ou Z, Zhong H, Zhang L, et al. Macrophage Membrane-coated nanoparticles alleviate hepatic ischemia-reperfusion injury caused by orthotopic liver transplantation by neutralizing endotoxin. Int J Nanomedicine. 2020;15:4125-4138.

[30]

Yang J, Liu Z, Wang C, et al. Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc Natl Acad Sci USA. 2018;115(26):6792-6797.

[31]

Chen Y, Luo R, Li J, et al. Intrinsic radical species scavenging activities of tea polyphenols nanoparticles block pyroptosis in endotoxin-induced sepsis. ACS nano. 2022;16(2):2429-2441.

[32]

Hu JJ, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21(7):736-745.

[33]

Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520-10594.

[34]

Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discovery. 2004;3(11):935-949.

[35]

Dai S, Chen Y, Fan X, et al. Emodin attenuates cardiomyocyte pyroptosis in doxorubicin-induced cardiotoxicity by directly binding to GSDMD. Phytomedicine. 2023;121:155105.

[36]

Rathkey JK, Zhao J, Liu Z, et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol. 2018;3(26):eaat2738.

[37]

Traughber CA, Timinski K, Prince A, et al. Disulfiram reduces atherosclerosis and enhances efferocytosis, autophagy, and atheroprotective gut microbiota in hyperlipidemic mice. Biorxiv. 2023.

[38]

Li Y, Shen J, Fang M, et al. The promising antitumour drug disulfiram inhibits viability and induces apoptosis in cardiomyocytes. Biomed Pharmacother. 2018;108:1062-1069.

[39]

Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20(1):33-48.

[40]

Krishnan N, Jiang Y, Zhou J, et al. A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nat Nanotechnol. 2024;19(3):345-353.

[41]

Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8(1):61-68.

[42]

Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 2020;11(1):2622.

[43]

Narain A, Asawa S, Chhabria V, Patil-Sen Y. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine (Lond). 2017;12(21):2677-2692.

[44]

Wang Z, Li J, Cho J, Malik AB. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol. 2014;9(3):204-210.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/