PIWI-interacting RNA MIABEPIR regulates cerebral endothelial cell function via DAPK2 pathway in offspring following maternal immune activation

Shan-Shan Li , Miao Guo , Yao Long , Yuang Cai , Ying Zhao , Shaoyuan Huang , Houzhi Yang , Yonggang Fan , Xu Chen , Xin Jin

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70260

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70260 DOI: 10.1002/ctm2.70260
RESEARCH ARTICLE

PIWI-interacting RNA MIABEPIR regulates cerebral endothelial cell function via DAPK2 pathway in offspring following maternal immune activation

Author information +
History +
PDF

Abstract

Maternal immune activation (MIA) is recognised as a risk factor in the neurodevelopmental disorders. However, the precise molecular pathways through which MIA disrupts neurovascular function remain largely unexplored. Here, we identify a novel MIA-associated brain endothelial piRNA (MIABEPIR) involved in regulating BMEC function and BBB integrity. RNA microarray analysis of foetal brain tissue from MIA-exposed mice revealed significant changes in piRNA expression, including a marked upregulation of MIABEPIR upregulated piRNAs. Immunofluorescence and FISH confirmed that MIABEPIR is localised in the microvascular endothelial cells of the brain. MIABEPIR overexpression enhances BMEC proliferation and angiogenesis but disrupts BBB integrity. In vivo, intracranial administration of lentiviral MIABEPIR in foetal mice resulted in marked BBB disruption. Mechanistically, we identified DAPK2 as a downstream target of MIABEPIR, leading to its downregulation. This suppression of DAPK2 inhibits autophagy in BMECs, suggesting that MIABEPIR modulates endothelial cell autophagy through the DAPK2 pathway. Our findings reveal a novel piRNA-mediated regulatory mechanism in neurovascular function during MIA and highlight MIABEPIR’s role in MIA-induced neurodevelopmental abnormalities. Targeting the MIABEPIR-DAPK2 axis represents a potential therapeutic strategy for addressing neurovascular dysfunction in neurodevelopmental disorders associated with maternal immune stress.

Keywords

autophagy / blood–brain barrier / brain microvascular endothelial cell / maternal immune activation / PIWI-interacting RNA

Cite this article

Download citation ▾
Shan-Shan Li, Miao Guo, Yao Long, Yuang Cai, Ying Zhao, Shaoyuan Huang, Houzhi Yang, Yonggang Fan, Xu Chen, Xin Jin. PIWI-interacting RNA MIABEPIR regulates cerebral endothelial cell function via DAPK2 pathway in offspring following maternal immune activation. Clinical and Translational Medicine, 2025, 15(3): e70260 DOI:10.1002/ctm2.70260

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Estes M, McAllister A. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353(6301):772-777.

[2]

Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn. 2018;247(4):588-619.

[3]

Smolders S, Notter T, Smolders SM, Rigo J, Brône B. Controversies and prospects about microglia in maternal immune activation models for neurodevelopmental disorders. Brain Behav Immun. 2018;73:51-65.

[4]

Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection—maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol. 2018;299(Pt A):241-251.

[5]

Garay PA, Hsiao EY, Patterson PH, McAllister A. Maternal immune activation causes age-and region-specific changes in brain cytokines in offspring throughout development. Brain Behav Immun. 2013;31:54-68.

[6]

Simões LR, Sangiogo G, Tashiro MH, et al. Maternal immune activation induced by lipopolysaccharide triggers immune response in pregnant mother and fetus, and induces behavioral impairment in adult rats. J Psychiatr Res. 2018;100:71-83.

[7]

Zhao Q, Dai W, Chen HY, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci USA. 2022;119(15):e2113310119.

[8]

Lu J, Fan X, Lu L, et al. Limosilactobacillus reuteri normalizes blood-brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide. Gut Microbes. 2023;15(1):2178800.

[9]

Granata T, Fusco L, Matricardi S, Tozzo A, Janigro D, Nabbout R. Inflammation in pediatric epilepsies: update on clinical features and treatment options. Epilepsy Behav. 2022;131(Pt B):107959.

[10]

Wang X, Ramat A, Simonelig M, Liu M. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol. 2023;24(2):123-141.

[11]

Iwasaki Y, Siomi M, Siomi H. PIWI-Interacting RNA: its biogenesis and functions. Annu Rev Biochem. 2015;84:405-433.

[12]

Zuo L, Wang Z, Tan Y, Chen X, Luo X. piRNAs and their functions in the brain. Int J Hum Genet. 2016;16(1-2):53-60.

[13]

Wakisaka KT. The dawn of pirna research in various neuronal disorders. Front Biosci (Landmark Ed). 2019;24(8):1440-1451.

[14]

Copley K, Shorter J. Repetitive elements in aging and neurodegeneration. Trends Genet. 2023;39(5):381-400.

[15]

Jiang M, Hong X, Gao Y, Kho AT, Tantisira KG, Li J. piRNA associates with immune diseases. Cell Commun Signal. 2024;22(1):347.

[16]

Liu Y, Dou M, Song X, et al. The emerging role of the piRNA/piwi complex in cancer. Mol Cancer. 2019;18(1):123.

[17]

Cheang I, Zhu Q, Liao S, Li X. Current understanding of piRNA in cardiovascular diseases. Front Mol Med. 2021;1:791931.

[18]

Sato K, Takayama K, Inoue S. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. Front Aging Neurosci. 2023;15:1157818.

[19]

Chavda V, Madhwani K, Chaurasia B. PiWi RNA in neurodevelopment and neurodegenerative disorders. Curr Mol Pharmacol. 2022;15(3):517-531.

[20]

Gasperini C, Tuntevski K, Beatini S, et al. Piwil2 (Mili) sustains neurogenesis and prevents cellular senescence in the postnatal hippocampus. EMBO Rep. 2023;24(2):e53801.

[21]

Rajasethupathy P, Antonov I, Sheridan R, et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012;149(3):693-707.

[22]

Jain G, Stuendl A, Rao P, et al. A combined miRNA-piRNA signature to detect Alzheimer’s disease. Transl Psychiatr. 2019;9(1):250.

[23]

Qiu W, Guo X, Lin X, et al. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease. Neurobiol Aging. 2017;57:170-177.

[24]

Zhang T, Wong G. Dysregulation of Human somatic piRNA expression in parkinson’s disease subtypes and stages. Int J Mol Sci. 2022;23(5):2469.

[25]

Huang X, Wang C, Zhang T, et al. PIWI-interacting RNA expression regulates pathogenesis in a Caenorhabditis elegans model of Lewy body disease. Nat Commun. 2023;14(1):6137.

[26]

Schulze M, Sommer A, Plötz S, et al. Sporadic Parkinson’s disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs. Acta Neuropathol Commun. 2018;6(1):58.

[27]

Gao Y, Zhang L, Meng Q. The screening of Piwi-Interacting RNA biomarkers in sporadic Parkinson’s disease. Altern Ther Health Med. 2024;30(11):21-27.

[28]

Czech B, Munafò M, Ciabrelli F, et al. piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet. 2018;52:131-157.

[29]

Zhang J, Chen S, Liu K. Structural insights into piRNA biogenesis. Biochim Biophys Acta Gene Regul Mech. 2022;1865(2):194799.

[30]

Nandi S, Chandramohan D, Fioriti L, et al. Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc Natl Acad Sci U S A. 2016;113(45):12697-12702.

[31]

Lee EJ, Banerjee S, Zhou H, et al. Identification of piRNAs in the central nervous system. RNA. 2011;17(6):1090-1099.

[32]

Evans C, Iruela-Arispe M, Zhao Y. Mechanisms of Endothelial regeneration and vascular repair and their application to regenerative medicine. Am J Pathol. 2021;191(1):52-65.

[33]

Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 2019;316(2):C135-C153.

[34]

Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front Cell Neurosci. 2021;15:661838.

[35]

Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-brain barrier disruption and its involvement in neurodevelopmental and neurodegenerative Disorders. Int J Mol Sci. 2022;23(23):1527.

[36]

Zawadzka A, Cieślik M, Adamczyk A. The Role of maternal immune activation in the pathogenesis of autism: a review of the evidence, proposed mechanisms and implications for treatment. Int J Mol Sci. 2021;22(21):11516.

[37]

Tărlungeanu DC, Deliu E, Dotter CP, et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell. 2016;167(6):1481-1494 e18.

[38]

Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21-78.

[39]

Goodkin D, Benning M. An outpatient maneuver to treat bloody effluent during continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int. 1990;10(3):227-229.

[40]

Saberiyan M, Zarei M, Safi A, et al. The role of DAPK2 as a key regulatory element in various human cancers: a systematic review. Mol Biol Rep. 2024;51(1):886.

[41]

Ber Y, Shiloh R, Gilad Y, Degani N, Bialik S, Kimchi A. DAPK2 is a novel regulator of mTORC1 activity and autophagy. Cell Death Differ. 2015;22(3):465-475.

[42]

Soussi H, Reggio S, Alili R, et al. DAPK2 Downregulation associates with attenuated adipocyte autophagic clearance in human obesity. Diabetes. 2015;64(10):3452-3463.

[43]

Schlegel CR, Fonseca A, Stöcker S, et al. DAPK2 is a novel modulator of TRAIL-induced apoptosis. Cell Death Differ. 2014;21(11):1780-1791.

[44]

Nighot P, Ma T. Role of autophagy in the regulation of epithelial cell junctions. Tissue Barriers. 2016;4(3):e1171284.

[45]

Saha K, Subramenium Ganapathy A, Wang A, et al. Autophagy reduces the degradation and promotes membrane localization of occludin to enhance the intestinal epithelial tight junction barrier against paracellular macromolecule flux. J Crohns Colitis. 2023;17(3):433-449.

[46]

Elbadawy M, Usui T, Yamawaki H, Sasaki K. Novel functions of death-associated protein kinases through mitogen-activated protein kinase-related signals. Int J Mol Sci. 2018;19(10):3031.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/