Vascularised organoids: Recent advances and applications in cancer research

Rui Zhou , Dagmar Brislinger , Julia Fuchs , Alicia Lyons , Sonja Langthaler , Charlotte A. E. Hauser , Christian Baumgartner

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70258

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70258 DOI: 10.1002/ctm2.70258
REVIEW

Vascularised organoids: Recent advances and applications in cancer research

Author information +
History +
PDF

Abstract

•Comparative analysis: Evaluation of organoids, animal models, and 2D models, highlighting their respective strengths and limitations in replicating physiological conditions and studying disease processes.

•Vascularisation techniques: Comparative evaluation of vascularised organoid fabrication methods, emphasising their efficiency, scalability and ability to replicate physiological vascular networks.

•Material selection: Thorough evaluation of materials for vascularised organoid culture system, focusing on those that effectively mimic the extracellular matrix and support vascular network formation.

•Applications: Overview of organoid applications in basic cancer research and clinical settings, with an emphasis on their potential in drug discovery, disease modelling and exploring complex biological processes.

Keywords

3D tissue models / angiogenesis and vasculogenesis / cancer-vasculature interactions / drug testing platforms / extracellular matrix (ECM) / preclinical cancer models / tumour biology and cancer progression / tumour microenvironment / vascularised organoids

Cite this article

Download citation ▾
Rui Zhou, Dagmar Brislinger, Julia Fuchs, Alicia Lyons, Sonja Langthaler, Charlotte A. E. Hauser, Christian Baumgartner. Vascularised organoids: Recent advances and applications in cancer research. Clinical and Translational Medicine, 2025, 15(3): e70258 DOI:10.1002/ctm2.70258

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015:a systematic analysis for the Global Burden of Disease Study 2015.. Lancet Lond Engl. 2016;388(10053):1459-1544.

[2]

Kretzschmar K. Cancer research using organoid technology. J Mol Med Berl Ger. 2021;99(4):501-515.

[3]

GBD Compare. Institute for Health Metrics and Evaluation. Accessed July 11, 2024. http://vizhub.healthdata.org/gbd-compare

[4]

Bartlett R, Everett W, Lim S, et al. Personalized in vitro cancer modeling – fantasy or reality. Transl Oncol. 2014;7(6):657-664.

[5]

Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol OncolJ Hematol Oncol. 2022;15(1):58.

[6]

Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18(7):407-418.

[7]

De Lorenzi F, Hansen N, Theek B, et al. Engineering mesoscopic 3D tumor models with a self-organizing vascularized matrix. Adv Mater. 2024;36(5):e2303196.

[8]

Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primer. 2022;2(1):1-21.

[9]

Teixeira FC, Chaves S, Torres AL, Barrias CC, Bidarra SJ. Engineering a vascularized 3d hybrid system to model tumor-stroma interactions in breast cancer. Front Bioeng Biotechnol. 2021;9:647031. Accessed January 9, 2024.

[10]

Paşca SP, Arlotta P, Bateup HS, et al. A nomenclature consensus for nervous system organoids and assembloids. Nature. 2022;609(7929):907-910.

[11]

Lee SY, Koo IS, Hwang HJ, Lee DW. In Vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov. 2023;28(4):119-137.

[12]

Blanco-Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous hydrogels for bioengineering advanced 3D tumor models. Adv Sci. 2021;8(4):2003129.

[13]

Kuehlbach C, Hensler S, Mueller MM. Recapitulating the angiogenic switch in a hydrogel-based 3D in vitro tumor-stroma model. Bioengineering. 2021;8(11):186.

[14]

Paek J, Park SE, Lu Q, et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano. 2019;13(7):7627-7643.

[15]

Gritsenko P, Leenders W, Friedl P. Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma. Histochem Cell Biol. 2017;148(4):395-406.

[16]

Rijal G, Li W. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening. Sci Adv. 2017;3(9):e1700764.

[17]

Wang Y, Kankala RK, Zhang J, et al. Modeling endothelialized hepatic tumor microtissues for drug screening. Adv Sci. 2020;7(21):2002002.

[18]

Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36(5):432-441.

[19]

Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601-610.

[20]

Hasan A, Paul A, Vrana NE, et al. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials. 2014;35(26):7308-7325.

[21]

Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal. 2022;15(753):eaaz4742.

[22]

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298-307.

[23]

Pezzella F. Cancer and blood vessels: a complex relationship. Journal of Lung Cancer. 2016;3(S1):1-6. doi:10.4172/2576-1447.1000S1-002

[24]

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77(9):1745.

[25]

Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev. 2010;37(1):63.

[26]

Yanagisawa K, Konno M, Liu H, et al. A four-dimensional organoid system to visualize cancer cell vascular invasion. Biology. 2020;9(11):361.

[27]

Bonvin C, Overney J, Shieh AC, Dixon JB, Swartz MA. A multichamber fluidic device for 3D cultures under interstitial flow with live imaging: development, characterization, and applications. Biotechnol Bioeng. 2010;105(5):982-991.

[28]

Shi W, Mirza S, Kuss M, et al. Embedded bioprinting of breast tumor cells and organoids using low-concentration collagen-based bioinks. Adv Healthc Mater. 2023;12(26):2300905.

[29]

Choi YM, Lee H, Ann M, Song M, Rheey J, Jang J. 3D bioprinted vascularized lung cancer organoid models with underlying disease capable of more precise drug evaluation. Biofabrication. 2023;15(3):034104.

[30]

Mazio C, Casale C, Imparato G, Urciuolo F, Netti PA. Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomater. 2018;73:236-249.

[31]

Strobel HA, Moss SM, Hoying JB. Methods for vascularization and perfusion of tissue organoids. Mamm Genome. 2022;33(3):437-450.

[32]

Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4-27.

[33]

Karamanos NK, Theocharis AD, Piperigkou Z, et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021;288(24):6850-6912.

[34]

Mavrogonatou E, Pratsinis H, Papadopoulou A, Karamanos NK, Kletsas D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol. 2019:27-42.

[35]

Castellote-Borrell M, Merlina F, Rodríguez AR, Guasch J. Biohybrid hydrogels for tumoroid culture. Adv Biol. 2023;7(12):2300118.

[36]

Magno V, Meinhardt A, Werner C. Polymer hydrogels to guide organotypic and organoid cultures. Adv Funct Mater. 2020;30(48):2000097.

[37]

Li Y, Kumacheva E. Hydrogel microenvironments for cancer spheroid growth and drug screening. Sci Adv. 2018;4(4):eaas8998.

[38]

Katz RR, West JL. Reductionist three-dimensional tumor microenvironment models in synthetic hydrogels. Cancers. 2022;14(5):1225.

[39]

Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing synthetic hydrogels through nature-inspired materials chemistry. Adv Mater. 2024;36(42):e2404235.

[40]

O’Connor C, Brady E, Zheng Y, Moore E, Stevens KR. Engineering the multiscale complexity of vascular networks. Nat Rev Mater. 2022;7(9):702-716.

[41]

Liu J, Zheng H, Poh PSP, Machens HG, Schilling AF. Hydrogels for engineering of perfusable vascular networks. Int J Mol Sci. 2015;16(7):15997-16016.

[42]

Jones MC, Caswell PT, Moran-Jones K, et al. VEGFR1 (Flt1) Regulates Rab4 recycling to control fibronectin polymerization and endothelial vessel branching. Traffic. 2009;10(6):754-766.

[43]

Bioengineering Approaches for the Advanced Organoid Research – Yi - 2021 – Advanced Materials – Wiley Online Library. Accessed February 27, 2024. https://onlinelibrary.wiley.com/doi/10.1002/adma.202007949

[44]

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372.

[45]

Humayun M, Ayuso JM, Brenneke RA, et al. Elucidating cancer-vascular paracrine signaling using a human organotypic breast cancer cell extravasation model. Biomaterials. 2021;270:120640.

[46]

Truong D, Fiorelli R, Barrientos ES, et al. A three-dimensional (3D) organotypic microfluidic model for glioma stem cells – vascular interactions. Biomaterials. 2019;198:63-77.

[47]

Gong MM, Lugo-Cintron KM, White BR, Kerr SC, Harari PM, Beebe DJ. Human organotypic lymphatic vessel model elucidates microenvironment-dependent signaling and barrier function. Biomaterials. 2019;214:119225.

[48]

Lugo-Cintrón KM, Ayuso JM, White BR, et al. Matrix density drives 3D organotypic lymphatic vessel activation in a microfluidic model of the breast tumor microenvironment. Lab Chip. 2020;20(9):1586-1600.

[49]

Jiménez-Torres JA, Peery SL, Sung KE, Beebe DJ. LumeNEXT: a practical method to pattern luminal structures in ECM gels. Adv Healthc Mater. 2016;5(2):198-204.

[50]

Lai BFL, Lu RXZ, Davenport Huyer L, et al. A well plate–based multiplexed platform for incorporation of organoids into an organ-on-a-chip system with a perfusable vasculature. Nat Protoc. 2021;16(4):2158-2189.

[51]

Lai BFL, Huyer LD, Lu RXZ, Drecun S, Radisic M, Zhang B. InVADE: integrated vasculature for assessing dynamic events. Adv Funct Mater. 2017;27(46):1703524.

[52]

Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13(8):1489-1500.

[53]

Lai Benjamin FL, Lu Rick X, Hu Y, et al. Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ-on-a-chip vasculature. Adv Funct Mater. 2020;30(48):2000545.

[54]

Wong AD, Russell LM, Katt ME, Searson PC. Chemotherapeutic drug delivery and quantitative analysis of proliferation, apoptosis, and migration in a tissue-engineered three-dimensional microvessel model of the tumor microenvironment. ACS Biomater Sci Eng. 2019;5(2):633-643.

[55]

Lee SR, Kim Y, Kim S, et al. U-IMPACT: a universal 3D microfluidic cell culture platform. Microsyst Nanoeng. 2022;8:126.

[56]

Ibrahim LI, Hajal C, Offeddu GS, Gillrie MR, Kamm RD. Omentum-on-a-chip: a multicellular, vascularized microfluidic model of the human peritoneum for the study of ovarian cancer metastases. Biomaterials. 2022;288:121728.

[57]

Hajal C, Ibrahim L, Serrano JC, Offeddu GS, Kamm RD. The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform. Biomaterials. 2021;265:120470.

[58]

Salo T, Sutinen M, Hoque Apu E, et al. A novel human leiomyoma tissue derived matrix for cell culture studies. BMC Cancer. 2015;15(1):981.

[59]

Biondani G, Zeeberg K, Greco MR, et al. Extracellular matrix composition modulates PDAC parenchymal and stem cell plasticity and behavior through the secretome. FEBS J. 2018;285(11):2104-2124.

[60]

Woenne EC, Lederle W, Zwick S, et al. mmp inhibition blocks fibroblast-dependent skin cancer invasion, reduces vascularization and alters VEGF-A and PDGF-BB expression. Anticancer Res. 2010;30(3):703-711.

[61]

Baltazar T, Kajave NS, Rodriguez M, et al. Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: a comparative in vitro and in vivo study. J Biomed Mater Res B Appl Biomater. 2022;110(10):2323-2337.

[62]

Zimoch J, Padial JS, Klar AS, et al. Polyisocyanopeptide hydrogels: a novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater. 2018;70:129-139.

[63]

Ehsan SM, Welch-Reardon KM, Waterman ML, Hughes CCW, George SC. A three-dimensional in vitro model of tumor cell intravasation. Integr Biol Quant Biosci Nano Macro. 2014;6(6):603-610.

[64]

Infanger DW, Cho Y, Lopez BS, et al. Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche. Cancer Res. 2013;73(23):7079-7089.

[65]

Hu M, Dailamy A, Lei XY, et al. Facile engineering of long-term culturable ex vivo vascularized tissues using biologically derived matrices. Adv Healthc Mater. 2018;7(23):e1800845.

[66]

Cheng S, Li Y, Yu C, Deng Z, Huang J, Zhang Z. 3D bioprinted tumor-vessel-bone co-culture scaffold for breast cancer bone metastasis modeling and drug testing. Chem Eng J. 2023;476:146685.

[67]

Cui H, Esworthy T, Zhou X, et al. Engineering a novel 3D printed vascularized tissue model for investigating breast cancer metastasis to bone. Adv Healthc Mater. 2020;9(15):1900924.

[68]

Kim J, Kim J, Gao G, et al. Bioprinted organoids platform with tumor vasculature for implementing precision personalized medicine targeted towards gastric cancer. Adv Funct Mater. 2024;34(11):2306676.

[69]

Miura K, Koyanagi-Aoi M, Maniwa Y, Aoi T. Chorioallantoic membrane assay revealed the role of TIPARP (2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible poly (ADP-ribose) polymerase) in lung adenocarcinoma-induced angiogenesis. Cancer Cell Int. 2023;23(1):34.

[70]

Gupta S, Ramesh K, Ahmed S, Kakkar V. Lab-on-chip technology: a review on design trends and future scope in biomedical applications. Int J Bio-Sci Bio-Technol. 2016;8(5):311-322.

[71]

Zhang B, Montgomery M, Chamberlain MD, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater. 2016;15(6):669-678.

[72]

Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl 4):467-479.

[73]

Kankala RK, Zhao J, Liu CG, et al. Highly porous microcarriers for minimally invasive in situ skeletal muscle cell delivery. Small. 2019;15(25):1901397.

[74]

Nilsson K, Buzsaky F, Mosbach K. Growth of anchorage–dependent cells on macroporous microcarriers. Bio/Technology. 1986;4(11):989-990.

[75]

Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785.

[76]

Zhang YS, Yue K, Aleman J, et al. 3D Bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148-163.

[77]

Lee JM, Sing SL, Zhou M, Yeong WY. 3D bioprinting processes: a perspective on classification and terminology. Int J Bioprinting. 2018;4(2):151.

[78]

Li S, Liu YY, Liu LJ, Hu QX. A versatile method for fabricating tissue engineering scaffolds with a three-dimensional channel for prevasculature networks. ACS Appl Mater Interfaces. 2016;8(38):25096-25103.

[79]

Pun S, Prakash A, Demaree D, et al. Rapid biofabrication of an advanced microphysiological system mimicking phenotypical heterogeneity and drug resistance in glioblastoma. Adv Healthc Mater. 2024;13(30):e2401876.

[80]

Lekkala VKR, Shrestha S, Al Qaryoute A, et al. Enhanced maturity and functionality of vascular human liver organoids through 3D bioprinting and pillar plate culture. ACS Biomater Sci Eng. 2025;11(1):506-517.

[81]

Wang J, Zhou D, Li R, et al. Protocol for engineering bone organoids from mesenchymal stem cells. Bioact Mater. 2025;45:388-400.

[82]

Nowak-Sliwinska P, Segura T, Iruela-Arispe ML. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis. 2014;17(4):779-804.

[83]

Smith LM, Greenwood HE, Tyrrell WE, et al. The chicken chorioallantoic membrane as a low-cost, high-throughput model for cancer imaging. Npj Imaging. 2023;1(1):1-12.

[84]

Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol. 2015;33(7):401.

[85]

Shuai Y, Zheng M, Kundu SC, Mao C, Yang M. Bioengineered silk protein-based 3D in vitro models for tissue engineering and drug development: from silk matrix properties to biomedical applications. Adv Healthc Mater. 2024;13(28):e2401458.

[86]

Jo BH, Van Lerberghe LM, Motsegood KM, Beebe DJ. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromechanical Syst. 2000;9(1):76-81.

[87]

Ye X, Liu H, Ding Y, Li H, Lu B. Research on the cast molding process for high quality PDMS molds. Microelectron Eng. 2009;86(3):310-313.

[88]

Toepke MW, Beebe DJ. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip. 2006;6(12):1484-1486.

[89]

Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting – an emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater. 2024;32:356-384.

[90]

Das S, Kim SW, Choi YJ, et al. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater. 2019;95:188-200.

[91]

O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88-95.

[92]

Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6(1):41-75.

[93]

Theocharis A, Gialeli C, Hascall V, Karamanos NK. 1.1 Extracellular matrix: a functional scaffold. In: Karamanos NK, ed. Extracellular Matrix: Pathobiology and Signaling. De Gruyter; 2012:3-20.

[94]

Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5(7):539-551.

[95]

Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539(7630):560-564.

[96]

Wilson RL, Swaminathan G, Ettayebi K, et al. Protein-functionalized poly(ethylene glycol) hydrogels as scaffolds for monolayer organoid culture. Tissue Eng Part C Methods. 2021;27(1):12-23.

[97]

Chen C, Rengarajan V, Kjar A, Huang Y. A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays. Bioact Mater. 2021;6(4):1130-1139.

[98]

Norris SCP, Soto J, Kasko AM, Li S. photodegradable polyacrylamide gels for dynamic control of cell functions. ACS Appl Mater Interfaces. 2021;13(5):5929-5944.

[99]

Jung N, Moreth T, Stelzer EHK, Pampaloni F, Windbergs M. Non-invasive analysis of pancreas organoids in synthetic hydrogels defines material-cell interactions and luminal composition. Biomater Sci. 2021;9(16):5415-5426.

[100]

Wang M, Bai J, Shao K, et al. Poly(vinyl alcohol) hydrogels: the old and new functional materials. Int J Polym Sci. 2021;2021(1):2225426.

[101]

Liu K, Vandaele J, Yuan H, et al. Structure and applications of PIC-based polymers and hydrogels. Cell Rep Phys Sci. 2024;5(2):101834.

[102]

Zhang Y, Tang C, Span PN, et al. Polyisocyanide hydrogels as a tunable platform for mammary gland organoid formation. Adv Sci. 2020;7(18):2001797.

[103]

Ye S, Boeter JWB, Mihajlovic M, et al. A chemically defined hydrogel for human liver organoid culture. Adv Funct Mater. 2020;30(48):2000893.

[104]

Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today. 2011;6(3):232-239.

[105]

Abdelrahman S, Alsanie WF, Khan ZN, et al. A Parkinson’s disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold. Biofabrication. 2022;14(4):044103.

[106]

Xu J, Pérez-Pedroza R, Moretti M, et al. 3D bioprinting of colon organoids in ultrashort self-assembling and decorated peptide matrices. Int J Bioprinting. 2024;10(5):3033.

[107]

Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52(11):2745-2756.

[108]

Caniuguir A, Krause BJ, Hernandez C, Uauy R, Casanello P. Markers of early endothelial dysfunction in intrauterine growth restriction-derived human umbilical vein endothelial cells revealed by 2D-DIGE and mass spectrometry analyses. Placenta. 2016;41:14-26.

[109]

Kocherova I, Bryja A, Mozdziak P, et al. Human umbilical vein endothelial cells (HUVECs) co-culture with osteogenic cells: from molecular communication to engineering prevascularised bone grafts. J Clin Med. 2019;8(10):1602.

[110]

Bezenah JR, Kong YP, Putnam AJ. Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Sci Rep. 2018;8(1):2671.

[111]

Yu J. Vascularized organoids: a more complete model. Int J Stem Cells. 2020;14(2):127.

[112]

Pfeiffer D, Wankhammer K, Stefanitsch C, et al. Amnion-derived mesenchymal stem cells improve viability of endothelial cells exposed to shear stress in ePTFE grafts. Int J Artif Organs. 2019;42(2):80-87.

[113]

Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242-248.

[114]

Shibuya M. VEGF-VEGFR signals in health and disease. Biomol Ther. 2014;22(1):1-9.

[115]

Quintard C, Tubbs E, Jonsson G, et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun. 2024;15(1):1452.

[116]

Chauhan P, Nair A, Patidar A, Dandapat J, Sarkar A, Saha B. A primer on cytokines. Cytokine. 2021;145:155458.

[117]

de Jongh D, Massey EK, Berishvili E, et al. Organoids: a systematic review of ethical issues. Stem Cell Res Ther. 2022;13(1):337.

[118]

Yahaya BH, Shaffie SAC, Sasongko TH. In: Yahaya BH, ed. Organoid Technology for Disease Modelling and Personalized Treatment. Springer International Publishing; 2022:193-208.

[119]

Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng. 2023;7(3):031501.

[120]

Dalla Pozza E, Dando I, Biondani G, et al. Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi directionally convert into cancer stem cells. Int J Oncol. 2015;46(3):1099-1108.

[121]

Zhang S, Wan Z, Kamm RD. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip. 2021;21(3):473-488.

[122]

LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. Nat Mater. 2022;21(2):143-159.

[123]

Horowitz LF, Rodriguez AD, Au-Yeung A, et al. Microdissected “cuboids” for microfluidic drug testing of intact tissues. Lab Chip. 2021;21(1):122-142.

[124]

Brandenberg N, Hoehnel S, Kuttler F, et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat Biomed Eng. 2020;4(9):863-874.

[125]

Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. Prog Biomed Eng Bristol Engl. 2020;2(1).

[126]

Li Z, Yu D, Zhou C, et al. Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives. Biomater Transl. 2024;5(1):21. doi:10.12336/biomatertransl.2024.01.003

[127]

Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio–temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res. 2007;24(2):258-264.

[128]

Bezenah JR, Rioja AY, Juliar B, Friend N, Putnam AJ. Assessing the ability of human endothelial cells derived from induced pluripotent stem cells to form functional microvasculature in vivo. Biotechnol Bioeng. 2018;116(2):415.

[129]

Magnussen AL, Mills IG. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br J Cancer. 2021;125(3):324-336.

[130]

Teriyapirom I, Batista-Rocha AS, Koo BK. Genetic engineering in organoids. J Mol Med Berl Ger. 2021;99(4):555-568.

[131]

Palikuqi B, Nguyen DHT, Li G, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature. 2020;585(7825):426-432.

[132]

Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571-584.

[133]

Ringel T, Frey N, Ringnalda F, et al. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell. 2020;26(3):431-440.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

403

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/