LINC01088 prevents ferroptosis in glioblastoma by enhancing SLC7A11 via HLTF/USP7 axis

Yujie Zhou , Zhen Zhao , Cheng Jiang , Chuansheng Nie , Dongdong Xiao , Zhipeng Wu , Hao Yu , Jianglin Zheng , Xuan Wang , Xiaobing Jiang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70257

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70257 DOI: 10.1002/ctm2.70257
RESEARCH ARTICLE

LINC01088 prevents ferroptosis in glioblastoma by enhancing SLC7A11 via HLTF/USP7 axis

Author information +
History +
PDF

Abstract

•LINC01088 is transcriptionally upregulated by SP1.

•LINC01088 acts as a scaffold platform to bind USP7 and HLTF.

•USP7, as a deubiquitinating enzyme of HLTF, participates in inhibiting the ubiquitin-proteasome degradation of HLTF.

•HLTF transcriptionally upregates the expression of downstream SLC7A11, and ferroptosis of GBM cells was inhibited.

Keywords

cystine transporter / ferroptosis / glioblastoma / LncRNA / transcription factor

Cite this article

Download citation ▾
Yujie Zhou, Zhen Zhao, Cheng Jiang, Chuansheng Nie, Dongdong Xiao, Zhipeng Wu, Hao Yu, Jianglin Zheng, Xuan Wang, Xiaobing Jiang. LINC01088 prevents ferroptosis in glioblastoma by enhancing SLC7A11 via HLTF/USP7 axis. Clinical and Translational Medicine, 2025, 15(3): e70257 DOI:10.1002/ctm2.70257

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aldape K, Zadeh G, Mansouri S, et al. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathologica. 2015;129(6):829-848.

[2]

Aldoghachi AF, Aldoghachi AF, Breyne K, et al. Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience. 2022;491:240-270.

[3]

Alexander BM, Cloughesy TF. Adult glioblastoma. J Clin Oncol. 2017;35(21):2402-2409.

[4]

Ali MY, Oliva CR, Noman A, et al. Radioresistance in glioblastoma and the development of radiosensitizers. Cancers (Basel). 2020;12(9):2511.

[5]

Bausart M, Preat V, Malfanti A. Immunotherapy for glioblastoma: the promise of combination strategies. J Exp Clin Cancer Res. 2022;41(1):35.

[6]

Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 2014;6(11):1359-1370.

[7]

Casati G, Giunti L, Iorio AL, et al. Hippo pathway in regulating drug resistance of glioblastoma. Int J Mol Sci. 2021;22(24):13431.

[8]

Delello DFL, Hofstatter AJ, Paes DJ, et al. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm. 2021;168:76-89.

[9]

Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20(9):1100-1109.

[10]

Chan JJ, Tay Y. Noncoding RNA: rNA regulatory networks in cancer. Int J Mole Sci. 2018;19(5):1310.

[11]

Ghafouri-Fard S, Hussen BM, Gharebaghi A, et al. LncRNA signature in colorectal cancer. Pathol Res Pract. 2021;222:153432.

[12]

Shetty A, Venkatesh T, Kabbekodu SP, et al. LncRNA-miRNA-mRNA regulatory axes in endometrial cancer: a comprehensive overview. Arch Gynecol Obstet. 2022;306(5):1431-1447.

[13]

Yan H, Bu P. Non-coding RNA in cancer. Essay Biochem. 2021;65(4):625-639.

[14]

Yao ZT, Yang YM, Sun MM, et al. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Can Commun (Lond). 2022;42(2):117-140.

[15]

Zhao Z, Sun W, Guo Z, et al. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci. 2020;254:116900.

[16]

Hanahan D. Hallmarks of cancer: new dimensions. Can Discover. 2022;12(1):31-46.

[17]

Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer. Can Cell. 2019;35(6):830-849.

[18]

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mole Cell Biol. 2021;22(4):266-282.

[19]

Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88.

[20]

Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radical Biol Med. 2020;152:175-185.

[21]

Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18(5):280-296.

[22]

Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater (Deerfield Beach, Fla). 2019;31(51):e1904197.

[23]

Ai H, Xie W, Xiu AH, et al. The down-regulation of long non-coding RNA LINC01088 is associated with the poor prognosis of epithelial ovarian cancer patients. Eur Rev Med Pharmacol Sci. 2018;22(18):5836-5841.

[24]

Wen Z, Li Y, Tan B, et al. LINC01088 regulates the miR-95/LATS2 pathway through the ceRNA mechanism to inhibit the growth, invasion and migration of gastric cancer cells. Int J Immunopathol Pharmacol. 2022;36:1190328367.

[25]

Zhang W, Fei J, Yu S, et al. LINC01088 inhibits tumorigenesis of ovarian epithelial cells by targeting miR-24-1-5p. Sci Rep. 2018;8(1):2876.

[26]

Liu JQ, Feng YH, Zeng S, et al. linc01088 promotes cell proliferation by scaffolding EZH2 and repressing p21 in human non-small cell lung cancer. Life Sci. 2020;241:117134.

[27]

Xiao D, Zhou Y, Wang X, et al. A ferroptosis-related prognostic risk score model to predict clinical significance and immunogenic characteristics in glioblastoma multiforme. Oxidative Med Cell Long. 2021;2021:9107857.

[28]

Zhou Y, Xiao D, Jiang X. LncRNA RP3-525N10.2-NFKB1-PROS1 triplet-mediated low PROS1 expression is an onco-immunological biomarker in low-grade gliomas: a pan-cancer analysis with experimental verification. J Trans Med. 2022;20(1):335.

[29]

Zhou Y, Xiao D, Jiang X, et al. EREG is the core onco-immunological biomarker of cuproptosis and mediates the cross-talk between VEGF and CD99 signaling in glioblastoma. J Trans Med. 2023;21(1):28.

[30]

Qing P, Han L, Bin L, et al. USP7 regulates the stability and function of HLTF through deubiquitination. J Cell Biochem. 2011;112(12):3856-3862.

[31]

Liu S, Li H, Zhu Y, et al. LncRNA MNX1-AS1 sustains inactivation of Hippo pathway through a positive feedback loop with USP16/IGF2BP3 axis in gallbladder cancer. Can Lett. 2022;547:215862.

[32]

Sampson JH, Maus MV, June CH. Immunotherapy for brain tumors. J Clin Oncol. 2017;35(21):2450-2456.

[33]

Winkle M, El-Daly SM, Fabbri M, et al. Noncoding RNA therapeutics—challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8):629-651.

[34]

Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: an intimate relationship. Biochimica et Biophysica Acta Mol cell Res. 2019;1866(12):118535.

[35]

Li C, Pan B, Wang X, et al. Upregulated LINC01088 facilitates malignant phenotypes and immune escape of colorectal cancer by regulating microRNAs/G3BP1/PD-L1 axis. J Cancer Res Clin Oncol. 2022;148(8):1965-1982.

[36]

Chen D, Fan Z, Rauh M, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 2017;36(40):5593-5608.

[37]

Achar YJ, Balogh D, Neculai D, et al. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucl Acid Res. 2015;43(21):10277-10291.

[38]

Bai G, Kermi C, Stoy H, et al. HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. Mole Cell. 2020;78(6):1237-1251.

[39]

Unk I, Hajdú I, Fátyol K, et al. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proceed Nat Acad Sci USA. 2008;105(10):3768-3773.

[40]

Mansour MA. Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol. 2018;101:80-93.

[41]

Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Ann Rev Biochem. 2017;86:159-192.

[42]

Pozhidaeva A, Bezsonova I. USP7:structure, substrate specificity, and inhibition. DNA Repair. 2019;76:30-39.

[43]

Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox. Can Commun (London, England). 2018;38(1):12.

[44]

Li S, Lu Z, Sun R, et al. The role of SLC7A11 in cancer: friend or foe?. Cancers. 2022;14(13):3059.

[45]

Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biol Med. 2019;133:162-168.

[46]

He W, Shu W, Xue L, et al. Synergistic effect of erastin combined with nutlin-3 on vestibular schwannoma cells as p53 modulates erastin-induced ferroptosis response. J Oncol. 2022;2022:7507857.

[47]

Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-1072.

[48]

Zhang Y, Swanda RV, Nie L, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021;12(1):1589.

[49]

Tavana O, Gu W. Modulation of the p53/MDM2 interplay by HAUSP inhibitors. J Mole Cell Biol. 2017;9(1):45-52.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/