An adoptive cell therapy with TREM2-overexpressing macrophages mitigates the transition from acute kidney injury to chronic kidney disease

Yating Zhang , Yu Liu , Siweier Luo , Hanzhi Liang , Chipeng Guo , Yufei Du , Hongyu Li , Le Wang , Xiaohua Wang , Chun Tang , Yiming Zhou

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70252

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70252 DOI: 10.1002/ctm2.70252
RESEARCH ARTICLE

An adoptive cell therapy with TREM2-overexpressing macrophages mitigates the transition from acute kidney injury to chronic kidney disease

Author information +
History +
PDF

Abstract

•TREM2 knockout worsens kidney injury and accelerates AKI–CKD transition.

•TREM2 is upregulated by hypoxia via HIF1α in AKI–CKD transition.

•An adoptive cell therapy using TREM2-overexpressing macrophages reduces kidney inflammation and fibrosis.

Keywords

AKI–CKD transition / cell therapy / kidney disease / macrophages / TREM2

Cite this article

Download citation ▾
Yating Zhang, Yu Liu, Siweier Luo, Hanzhi Liang, Chipeng Guo, Yufei Du, Hongyu Li, Le Wang, Xiaohua Wang, Chun Tang, Yiming Zhou. An adoptive cell therapy with TREM2-overexpressing macrophages mitigates the transition from acute kidney injury to chronic kidney disease. Clinical and Translational Medicine, 2025, 15(3): e70252 DOI:10.1002/ctm2.70252

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52.

[2]

Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 2012;82(5):516-524.

[3]

Leung KC, Tonelli M, MT J. Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol. 2013;9(2):77-85.

[4]

Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442-448.

[5]

James MT, Bhatt M, Pannu N, et al. Long-term outcomes of acute kidney injury and strategies for improved care. Nat Rev Nephrol. 2020;16(4):193-205.

[6]

Zuk A, Bonventre JV. Acute kidney injury. Annu Rev Med. 2016;67:293-307.

[7]

See EJ, Jayasinghe K, Glassford N, et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 2019;95(1):160-172.

[8]

Zhao L, Han F, Wang J, et al. Current understanding of the administration of mesenchymal stem cells in acute kidney injury to chronic kidney disease transition: a review with a focus on preclinical models. Stem Cell Res Ther. 2019;10(1):385.

[9]

Chen J, Zhang H, Yi X, et al. Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discov. 2024;10(1):62.

[10]

Wang Z, Zhang C. From AKI to CKD: maladaptive repair and the underlying mechanisms. Int J Mol Sci. 2022;23(18):10880.

[11]

Jiang M, Bai M, Lei J, et al. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol. 2020;319(6):F1105.

[12]

Anders HJ. Immune system modulation of kidney regeneration–mechanisms and implications. Nat Rev Nephrol. 2014;10(6):347-358.

[13]

Wang J, Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell. 2016;165(3):668-678.

[14]

Venkatachalam MA, Weinberg JM, Kriz W, et al. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 2015;26(8):1765-1776.

[15]

Zhang M, Liu Q, Meng H, et al. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2024;9(1):12.

[16]

Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat Med. 2011;17(11):1391-1401.

[17]

Wang Q, Liu Y, Zhang Y, et al. Characterization of macrophages in ischemia-reperfusion injury-induced acute kidney injury based on single-cell RNA-Seq and bulk RNA-Seq analysis. Int Immunopharmacol. 2024;130:111754.

[18]

Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion injury. Semin Nephrol. 2010;30(3):268-277.

[19]

Belliere J, Casemayou A, Ducasse L, et al. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J Am Soc Nephrol. 2015;26(6):1363-1377.

[20]

Hiengrach P, Panpetch W, Chindamporn A, et al. Macrophage depletion alters bacterial gut microbiota partly through fungal overgrowth in feces that worsens cecal ligation and puncture sepsis mice. Sci Rep. 2022;12(1):9345.

[21]

Opperman KS, Vandyke K, Clark KC, et al. Clodronate-liposome mediated macrophage depletion abrogates multiple myeloma tumor establishment in vivo. Neoplasia. 2019;21(8):777-787.

[22]

Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115(1):56-65.

[23]

Lee S, Huen S, Nishio H, et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 2011;22(2):317-326.

[24]

Colonna M. The biology of TREM receptors. Nat Rev Immunol. 2023;23(9):580-594.

[25]

Lanier LL. DAP10-and DAP12-associated receptors in innate immunity. Immunol Rev. 2009;227(1):150-160.

[26]

Wang S, Sudan R, Peng V, et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. Cell. 2022;185(22):4153-4169.

[27]

Peng Q, Malhotra S, Torchia JA, et al. TREM2-and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal. 2010;3(122):ra38.

[28]

Ulland TK, Song WM, Huang SC, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170(4):649-663.

[29]

Zhong J, Xing X, Gao Y, et al. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell. 2024;42(6):9.

[30]

Wang PL, Yim AKY, Kim KW, et al. Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nat Commun. 2020;11(1):2552.

[31]

Lin CC, Chang TY, Lu YC, et al. TREM-2 mediates dendritic cell-induced NO to suppress Th17 activation and ameliorate chronic kidney diseases. J Mol Med (Berl). 2022;100(6):917-931.

[32]

Cui Y, Chen C, Tang Z, et al. TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway in mice. Cell Death Dis. 2024;15(6):401.

[33]

Akhter R, Shao Y, Formica S, et al. TREM2 alters the phagocytic, apoptotic and inflammatory response to Aβ(42) in HMC3 cells. Mol Immunol. 2021;131:171-179.

[34]

Patterson MT, Firulyova MM, Xu Y, et al. Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis. Nat Cardiovasc Res. 2023;2(11):1015-1031.

[35]

Colonna M. TREMs in the immune system and beyond. Nat Rev Immunol. 2003;3(6):445-453.

[36]

Obst J, Hall-Roberts HL, Smith TB, et al. PLCγ2 regulates TREM2 signalling and integrin-mediated adhesion and migration of human iPSC-derived macrophages. Sci Rep. 2021;11(1):19842.

[37]

Ferrara SJ, Chaudhary P, DeBell MJ, et al. TREM2 is thyroid hormone regulated making the TREM2 pathway druggable with ligands for thyroid hormone receptor. Cell Chem Biol. 2022;29(2):4.

[38]

Stonestrom AJ, Levine RL. Inhibiting PI3Kγ in acute myeloid leukemia. Nat Cancer. 2024;5(7):958-959.

[39]

Deczkowska A, Weiner A, Amit I. The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway. Cell. 2020;181(6):1207-1217.

[40]

Subramanian A, Vernon KA, Zhou Y, et al. Protective role for kidney TREM2(high) macrophages in obesity-and diabetes-induced kidney injury. Cell Rep. 2024;43(6):114253.

[41]

Rawat A, Jha MK, Morrison BM. Adoptive cell transfer of macrophages following peripheral nerve injury in mice. STAR Protoc. 2023;4(4):102624.

[42]

Sly LM, McKay DM. Macrophage immunotherapy: overcoming impediments to realize promise. Trends Immunol. 2022;43(12):959-968.

[43]

Noonepalle SKR, Gracia-Hernandez M, Aghdam N, et al. Cell therapy using ex vivo reprogrammed macrophages enhances antitumor immune responses in melanoma. J Exp Clin Cancer Res. 2024;43(1):263.

[44]

do Valle Duraes F, Lafont A, Beibel M, et al. Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. JCI Insight. 2020;5(3):e130651.

[45]

Fu Y, Tang C, Cai J, et al. Rodent models of AKI-CKD transition. Am J Physiol Renal Physiol. 2018;315(4):F1098.

[46]

Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther. 2023;8(1):129.

[47]

Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16(5):269-288.

[48]

Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684-696.

[49]

Han X, Cheng X, Xu J, et al. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice. Neuropharmacology. 2022;219:109231.

[50]

Doke T, Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol. 2022;32(10):841-853.

[51]

Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15(3):144-158.

[52]

Meng X, Jin J, Lan HY. Driving role of macrophages in transition from acute kidney injury to chronic kidney disease. Chin Med J (Engl). 2022;135(7):757-766.

[53]

Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 2015;11(2):88-101.

[54]

Meng XM, Tang PM, Li J, et al. Macrophage phenotype in kidney injury and repair. Kidney Dis (Basel). 2015;1(2):138-146.

[55]

Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov. 2024;10(1):229.

[56]

Satoh T, Kidoya H, Naito H, et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature. 2013;495(7442):524-528.

[57]

Yang Q, Wang Y, Pei G, et al. Bone marrow-derived Ly6C(-) macrophages promote ischemia-induced chronic kidney disease. Cell Death Dis. 2019;10(4):291.

[58]

Liu F, Dai S, Feng D, et al. Distinct fate, dynamics and niches of renal macrophages of bone marrow or embryonic origins. Nat Commun. 2020;11(1):2280.

[59]

Cao Q, Harris DC, Wang Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda). 2015;30(3):183-194.

[60]

Chen T, Cao Q, Wang Y, et al. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int. 2019;95(4):760-773.

[61]

Na YR, Kim SW, Seok SH. A new era of macrophage-based cell therapy. Exp Mol Med. 2023;55(9):1945-1954.

[62]

Yang S, Wang Y, Jia J, et al. Advances in engineered macrophages: a new frontier in cancer immunotherapy. Cell Death Dis. 2024;15(4):238.

[63]

Mishra AK, SK M. Advancing cellular immunotherapy with macrophages. Life Sci. 2023;328:121857.

[64]

Anderson NR, Minutolo NG, Gill S, et al. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021;81(5):1201-1208.

[65]

Lee S, Kivimäe S, Dolor A, et al. Macrophage-based cell therapies: the long and winding road. J Control Release. 2016;240:527-540.

[66]

Cassetta L, Pollard JW. A timeline of tumour-associated macrophage biology. Nat Rev Cancer. 2023;23(4):238-257.

[67]

Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399-416.

[68]

Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887-904.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/