SH3GL1-activated FTH1 inhibits ferroptosis and confers doxorubicin resistance in diffuse large B-cell lymphoma

Zi-Wen Duan , Wei-Ting Wang , Yan Wang , Rong Wang , Wei Hua , Chun-Yu Shang , Rui Gao , Hao-Rui Shen , Yue Li , Jia-Zhu Wu , Hua Yin , Li Wang , Jian-Yong Li , Wei Xu , Jin-Hua Liang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70246

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70246 DOI: 10.1002/ctm2.70246
RESEARCH ARTICLE

SH3GL1-activated FTH1 inhibits ferroptosis and confers doxorubicin resistance in diffuse large B-cell lymphoma

Author information +
History +
PDF

Abstract

•Elevated SH3GL1 expression in DLBCL patients was associated with a negative prognosis.

•SH3GL1 plays a crucial role in promoting DLBCL cell survival through the regulation of FTH1-mediated ferroptosis and doxorubicin resistance.

Keywords

diffuse large B-cell lymphoma / doxorubicin resistance / ferritinophagy / ferroptosis / FTH1 / SH3GL1

Cite this article

Download citation ▾
Zi-Wen Duan, Wei-Ting Wang, Yan Wang, Rong Wang, Wei Hua, Chun-Yu Shang, Rui Gao, Hao-Rui Shen, Yue Li, Jia-Zhu Wu, Hua Yin, Li Wang, Jian-Yong Li, Wei Xu, Jin-Hua Liang. SH3GL1-activated FTH1 inhibits ferroptosis and confers doxorubicin resistance in diffuse large B-cell lymphoma. Clinical and Translational Medicine, 2025, 15(3): e70246 DOI:10.1002/ctm2.70246

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sehn LH, Gascoyne RD. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125(1):22-32.

[2]

Leveille E, Johnson NA. Genetic events inhibiting apoptosis in diffuse large B cell lymphoma. Cancers. 2021;13(9):2167-2188.

[3]

Miao Y, Medeiros LJ, Xu-Monette ZY, et al. Dysregulation of cell survival in diffuse large B cell lymphoma: mechanisms and therapeutic targets. Front Oncol. 2019;9:107-123.

[4]

Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. New Engl J Med. 2018;378(15):1396-1407.

[5]

Wright GW, Huang DW, Phelan JD, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37(4):551-568.

[6]

Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell. 2017;170(3):564-576.

[7]

Baldassarre T, Watt K, Truesdell P, et al. Endophilin A2 promotes TNBC cell invasion and tumor metastasis. Mol Cancer Res. 2015;13(6):1044-1055.

[8]

Baldassarre T, Truesdell P, Craig AW. Endophilin A2 promotes HER2 internalization and sensitivity to trastuzumab-based therapy in HER2-positive breast cancers. Breast Cancer Res. 2017;19(1):110-124.

[9]

Genet G, Boyé K, Mathivet T, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10(1):2350-2364.

[10]

Norin U, Rintisch C, Meng L, et al. Endophilin A2 deficiency protects rodents from autoimmune arthritis by modulating T cell activation. Nat Commun. 2021;12(1):610-620.

[11]

Mai X, Shang J, Chen Q, et al. Endophilin A2 protects against renal fibrosis by targeting TGF-β/Smad signaling. FASEB J. 2022;36(11):e22603-e22615.

[12]

Zhao L, Zhou X, Xie F, et al. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. 2022;42(2):88-116.

[13]

dos Santos AF, Fazeli G, Xavier da Silva TN, et al. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 2023;33(12):1062-1076.

[14]

Ouyang S, Li H, Lou L, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol. 2022;52:102317-102338.

[15]

Yu T, Xu-Monette ZY, Yu L, et al. Mechanisms of ferroptosis and targeted therapeutic approaches in lymphoma. Cell Death Dis. 2023;14(11):771-784.

[16]

Schmitt A, Xu W, Bucher P, et al. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood. 2021;138(10):871-884.

[17]

Cai Y, Lv L, Lu T, et al. α-KG inhibits tumor growth of diffuse large B-cell lymphoma by inducing ROS and TP53-mediated ferroptosis. Cell Death Discov. 2023;9(1):182-195.

[18]

Schmitt A, Grimm M, Kreienkamp N, et al (2023) BRD4 inhibition sensitizes diffuse large B-cell lymphoma cells to ferroptosis. Blood. 142(13):1143-1155.

[19]

Kong N, Chen X, Feng J, et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 2021;11(12):4045-4054.

[20]

Hong Y, Ren T, Wang X, et al. APR-246 triggers ferritinophagy and ferroptosis of diffuse large B-cell lymphoma cells with distinct TP53 mutations. Leukemia. 2022;36(9):2269-2280.

[21]

Feng Z, Luan M, Zhu W, et al. Targeted ferritinophagy in gastrointestinal cancer: from molecular mechanisms to implications. Arch Toxicol. 2024;98(7):2007-2018.

[22]

Liu Y-C, Gong Y-T, Sun Q-Y, et al. Ferritinophagy induced ferroptosis in the management of cancer. Cell Oncol. 2023;47(1):19-35.

[23]

Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ. 2022;30(1):69-81.

[24]

Liang JH, Wang C, Yiu SPT, et al. Epstein-Barr virus induced cytidine metabolism roles in transformed B-cell growth and survival. mBio. 2021;12(4):e0153021.

[25]

Wang W-T, Xing T-Y, Du K-X, et al. CD30 protects EBV-positive diffuse large B-cell lymphoma cells against mitochondrial dysfunction through BNIP3-mediated mitophagy. Cancer Lett. 2024;583:216616-216627.

[26]

Wang W-T, Guo J-R, Wang L, et al. EBV-Mir-BART5-5p targets p53 independent pathway in cytoplasm: potential role in EBV lymphomagenesis. Genes Dis. 2023;10(4):1154-1156.

[27]

Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059-3067.

[28]

Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020;66:89-100.

[29]

Chen X, Tsvetkov AS, Shen H-M, et al. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy. 2024;20(6):1213-1246.

[30]

Hu W, Zhou C, Jing Q, et al. FTH promotes the proliferation and renders the HCC cells specifically resist to ferroptosis by maintaining iron homeostasis. Cancer Cell Int 2021;21(1).

[31]

Lu X, Qe Z, Xie Y. TCFL5 knockdown sensitizes DLBCL to doxorubicin treatment via regulation of GPX4. Cell Signal. 2023;110:110831-110841.

[32]

Mehawej C, Chouery E, Farah R, et al. Endophilin A2 deficiency impairs antibody production in humans. J Clin Immunol. 2024;45(1):37-46.

[33]

Li E-q, Zhang J-l. Essential role of SH3GL1 in interleukin-6(IL-6)-and vascular endothelial growth factor (VEGF)-triggered p130cas-mediated proliferation and migration of osteosarcoma cells. Hum Cell. 2017;30(4):300-310.

[34]

Hu S, Liu B, Shang J, et al. Targeting PTGDS promotes ferroptosis in peripheral T cell lymphoma through regulating HMOX1-mediated iron metabolism. Br J Cancer. 2025;132(4):384-400.

[35]

Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22(7):381-396.

[36]

Zhou Q, Meng Y, Li D, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Signal Transd Targeted Ther. 2024;9(1):55-84.

[37]

Zhou Q, Li T, Qin Q, et al. Ferroptosis in lymphoma: emerging mechanisms and a novel therapeutic approach. Front Genet. 2022;13:1039951-1039960.

[38]

Bian W, Li H, Chen Y, et al. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL. Biomed Pharmacother. 2024;173:116386-116397.

[39]

Zhang C, Zhan S, He Y, et al. Inhibition of CISD2 enhances sensitivity to doxorubicin in diffuse large B-cell lymphoma by regulating ferroptosis and ferritinophagy. Front Pharmacol. 2024;15:1482354-1482366.

[40]

Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35(6):830-849.

[41]

Yang F, Yi C, Wang X, et al. An overview of heavy chain ferritin in cancer. Front Biosci-Landmark. 2023;28(8):182-194.

[42]

Park JM, Su Y-H, Fan C-S, et al. Crosstalk between FTH1 and PYCR1 dysregulates proline metabolism and mediates cell growth in KRAS-mutant pancreatic cancer cells. Exp Mol Med. 2024;56(9):2065-2081.

[43]

Cui J, Chen Y, Yang Q, et al. Protosappanin A protects DOX-induced myocardial injury and cardiac dysfunction by targeting ACSL4/FTH1 axis-dependent ferroptosis. Adv Sci. 2024;11(34):e2310227-e2310232.

[44]

Wang J, Wu N, Peng M, et al. Ferritinophagy: research advance and clinical significance in cancers. Cell Death Discov. 2023;9(1):463-472.

[45]

Sun K, Li C, Liao S, et al. Ferritinophagy, a form of autophagic ferroptosis: new insights into cancer treatment. Front Pharmacol. 2022;13:1043344-1043354.

[46]

Liu M-Z, Kong N, Zhang G-Y. The critical role of ferritinophagy in human disease. Front Pharmacol. 2022;13:933732-933742.

[47]

Wang J, Li Y, Zhang J, et al. Isoliquiritin modulates ferroptosis via NF-κB signaling inhibition and alleviates doxorubicin resistance in breast cancer. Immunopharmacol Immunotoxicol. 2023;45(4):443-454.

[48]

Liang Y, Wang Y, Zhang Y, et al. HSPB1 facilitates chemoresistance through inhibiting ferroptotic cancer cell death and regulating NF-κB signaling pathway in breast cancer. Cell Death Dis. 2023;14(7):434-450.

[49]

He M, Wang Y, Xie J, et al. M7G modification of FTH1 and pri-miR-26a regulates ferroptosis and chemotherapy resistance in osteosarcoma. Oncogene. 2023;43(5):341-353.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/