Kibra knockdown inhibits the aberrant Hippo pathway, suppresses renal cyst formation and ameliorates renal fibrosis in nphp1KO mice

Yichen Yang , Zhihe Xue , Jiayong Lai , Jinglan Zhang , Changmiao Pang , Jinglin Zhong , Zhanpeng Kuang , Baojuan Zou , Yaqing Liu , Liangzhong Sun

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70245

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70245 DOI: 10.1002/ctm2.70245
RESEARCH ARTICLE

Kibra knockdown inhibits the aberrant Hippo pathway, suppresses renal cyst formation and ameliorates renal fibrosis in nphp1KO mice

Author information +
History +
PDF

Abstract

•Canonical Hippo pathway activated in nphp1-deficient disease models and patients.

•Kibra was a key upstream molecule in regulating the activation of canonical Hippo pathway in nphp1-deficient disease models and patients and closely related to renal cyst formation and fibrosis in nphp1KO mice.

Keywords

Hippo pathway / Kibra / nephronophthisis / nphp1 / renal cyst

Cite this article

Download citation ▾
Yichen Yang, Zhihe Xue, Jiayong Lai, Jinglan Zhang, Changmiao Pang, Jinglin Zhong, Zhanpeng Kuang, Baojuan Zou, Yaqing Liu, Liangzhong Sun. Kibra knockdown inhibits the aberrant Hippo pathway, suppresses renal cyst formation and ameliorates renal fibrosis in nphp1KO mice. Clinical and Translational Medicine, 2025, 15(3): e70245 DOI:10.1002/ctm2.70245

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012;27(3):363-373.

[2]

Srivastava S, Molinari E, Raman S, Sayer JA. Many genes—one disease? Genetics of nephronophthisis (NPHP) and NPHP-associated disorders. Front Pediatr. 2018;5:287.

[3]

Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis – pathobiology and molecular pathogenesis of a rare kidney genetic disease. Genes (Basel). 2021;12(11):1762.

[4]

Petzold F, Billot K, Chen X, et al. The genetic landscape and clinical spectrum of nephronophthisis and related ciliopathies. Kidney Int. 2023;104(2):378-387.

[5]

Wolf MTF, Hildebrandt F. Nephronophthisis. Pediatr Nephrol. 2011;26(2):181-194.

[6]

Simms RJ, Eley L, Sayer JA. Nephronophthisis. Eur J Hum Genet. 2009;17(4):406-416.

[7]

Sang L, Miller JJ, Corbit KC, et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 2011;145(4):513-528.

[8]

Ishikawa H, Marshall WF. Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol. 2011;12(4):222-234.

[9]

Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. 2019;15(4):199-219.

[10]

Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development. 1995;121(4):1053-1063.

[11]

Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene Warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995;9(5):534-546.

[12]

Dong J, Feldmann G, Huang J et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130(6):1120-1133.

[13]

Zhao B, Ye X, Yu J et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962-1971.

[14]

Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol. 2008;18(5):311-321.

[15]

Hergovich A, Schmitz D, Hemmings BA. The human tumour suppressor LATS1 is activated by human MOB1 at the membrane. Biochem Biophys Res Commun. 2006;345(1):50-58.

[16]

Chan EH, Nousiainen M, Chalamalasetty RB et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 2005;24(12):2076-2086.

[17]

Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24(1):72-85.

[18]

Kanai F, Marignani PA, Sarbassova D, et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 2000;19(24):6778-6791.

[19]

Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747-2761.

[20]

Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell. 2005;122(3):421-434.

[21]

Pocaterra A, Romani P, Dupont S. YAP/TAZ functions and their regulation at a glance. J Cell Sci. 2020;133(2):jcs230425.

[22]

Yu J, Zheng Y, Dong J, et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell. 2010;18(2):288-299.

[23]

Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell. 2010;18(2):300-308.

[24]

Qi S, Zhu Y, Liu X, et al. WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy. Mol Cell. 2022;82(10):1850-1864.

[25]

Morin-Kensicki EM, Boone BN, Howell M, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol. 2006;26(1):77-87.

[26]

Reginensi A, Scott RP, Gregorieff A, et al. Yap-and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 2013;9(3):e1003380.

[27]

Hossain Z, Ali SM, Ko HL, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104(5):1631-1636.

[28]

Tian Y, Kolb R, Hong JH, et al. TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol. 2007;27(18):6383-6395.

[29]

Habbig S, Bartram MP, Müller RU, et al. NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J Cell Biol. 2011;193(4):633-642.

[30]

Habbig S, Bartram MP, Sagmuller JG, et al. The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the oncogenic transcriptional regulator TAZ. Hum Mol Genet. 2012;21(26):5528-5538.

[31]

Frank V, Habbig S, Bartram MP, et al. Mutations in NEK8 link multiple organ dysplasia with altered Hippo signalling and increased c-MYC expression. Hum Mol Genet. 2013;22(11):2177-2185.

[32]

Airik M, Schüler M, McCourt B, et al. Loss of Anks6 leads to YAP deficiency and liver abnormalities. Hum Mol Genet. 2020;29(18):3064-3080.

[33]

CHEN Huamu SLHM. Construction of NPHP1 knockout renal collecting ductepithelial cells based on CRISPR/Cas9 technology. Shandong Med J. 2020;60(17):21-25, 115.

[34]

Wu X, Wang H, Chen H, et al. Overexpression of smad7 inhibits the TGF-β/Smad signaling pathway and EMT in NPHP1-defective MDCK cells. Biochem Biophys Res Commun. 2021;582:57-63.

[35]

Hu Q, Lai J, Chen H, et al. Reducing GEF-H1 expression inhibits renal cyst formation, inflammation, and fibrosis via RhoA signaling in nephronophthisis. Int J Mol Sci. 2023;24(4):3504.

[36]

Li D, Hu M, Chen H, et al. An Nphp1 knockout mouse model targeting exon 2–20 demonstrates characteristic phenotypes of human nephronophthisis. Hum Mol Genet. 2021;31(2):232-243.

[37]

Schwarz H, Popp B, Airik R, et al. Biallelic ANKS6 mutations cause late-onset ciliopathy with chronic kidney disease through YAP dysregulation. Hum Mol Genet. 2022;31(9):1357-1369.

[38]

Muller RU, Schermer B. Hippo signaling-a central player in cystic kidney disease? Pediatr Nephrol. 2020;35(7):1143-1152.

[39]

Delous M, Hellman NE, Gaudé H, et al. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet. 2009;18(24):4711-4723.

[40]

Wolf MT. Nephronophthisis and related syndromes. Curr Opin Pediatr. 2015;27(2):201-211.

[41]

Ben MS, Mauviel A. Molecular mechanisms underlying TGF-ss/Hippo signaling crosstalks—role of baso-apical epithelial cell polarity. Int J Biochem Cell Biol. 2018;98:75-81.

[42]

Duning K, Schurek EM, Schluter M, et al. KIBRA modulates directional migration of podocytes. J Am Soc Nephrol. 2008;19(10):1891-1903.

[43]

Zhang Y, Zhang Y, Kameishi S, et al. The Amot/Integrin protein complex transmits mechanical forces required for vascular expansion. Cell Rep. 2021;36(8):109616.

[44]

Wang W, Li X, Huang J, et al. Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics. 2014;13(1):119-131.

[45]

Meliambro K, Wong JS, Ray J, et al. The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics. J Biol Chem. 2017;292(51):21137-21148.

[46]

Meliambro K, Yang Y, de Cos M, et al. KIBRA upregulation increases susceptibility to podocyte injury and glomerular disease progression. JCI Insight. 2023;8(7):e165002.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/