Deciphering the secret codes in N7-methylguanosine modification: Context-dependent function of methyltransferase-like 1 in human diseases

Huan Fang , Jing He , Dan Du , Xue Wang , Xinyu Xu , Linping Lu , Yefan Zhou , Yangyang Wen , Fucheng He , Yingxia Li , Hongtao Wen , Mingxia Zhou

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70240

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70240 DOI: 10.1002/ctm2.70240
REVIEW

Deciphering the secret codes in N7-methylguanosine modification: Context-dependent function of methyltransferase-like 1 in human diseases

Author information +
History +
PDF

Abstract

•METTL1-mediated m7G modification is crucial for various biological processes, including RNA stability, maturation and translation.

•METTL1 has emerged as a critical epigenetic modulator in human illnesses, with its dysregulated expression correlating with multiple diseases progression and presenting opportunities for both diagnostic biomarker development and molecular-targeted therapy.

•Enormous knowledge gaps persist regarding context-dependent regulatory networks of METTL1 and dynamic m7G modification patterns, necessitating mechanistic interrogation to bridge basic research with clinical translation in precision medicine.

Keywords

cancer progression / METTL1 / N 7-methylguanosine (m 7G) / RNA modification / therapeutic potential

Cite this article

Download citation ▾
Huan Fang, Jing He, Dan Du, Xue Wang, Xinyu Xu, Linping Lu, Yefan Zhou, Yangyang Wen, Fucheng He, Yingxia Li, Hongtao Wen, Mingxia Zhou. Deciphering the secret codes in N7-methylguanosine modification: Context-dependent function of methyltransferase-like 1 in human diseases. Clinical and Translational Medicine, 2025, 15(2): e70240 DOI:10.1002/ctm2.70240

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HollidayR. Epigenetics: a historical overview. Epigenetics. 2006; 1(2): 76-80.

[2]

BaylinSB, OhmJE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction. Nat Rev Cancer. 2006; 6(2): 107-116.

[3]

KouzaridesT. Chromatin modifications and their function. Cell. 2007; 128(4): 693-705.

[4]

EggerG, LiangG, AparicioA, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004; 429(6990): 457-463.

[5]

LiY. Modern epigenetics methods in biological research. Methods. 2021; 187: 104-113.

[6]

Esteve-PuigR, Bueno-Costa A, EstellerM. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett. 2020; 474: 127-137.

[7]

JackmanJE, Alfonzo JD. Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip Rev RNA. 2013; 4(1): 35-48.

[8]

OntiverosRJ, StouteJ, LiuKF. The chemical diversity of RNA modifications. Biochem J. 2019; 476(8): 1227-1245.

[9]

RoundtreeIA, EvansME, PanT, HeC. Dynamic RNA modifications in gene expression regulation. Cell. 2017; 169(7): 1187-1200.

[10]

ZhaoLY, SongJ, LiuY, SongCX, YiC. Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 2020; 11(11): 792-808.

[11]

HeJ, ZhouM, YinJ, et al. METTL3 restrains papillary thyroid cancer progression via m(6)A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 2021; 29(5): 1821-1837.

[12]

DuD, HeJ, JuC, et al. When N(7)-methyladenosine modification meets cancer: emerging frontiers and promising therapeutic opportunities. Cancer Lett. 2023; 562: 216165.

[13]

AlexandrovA, Martzen MR, PhizickyEM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA. 2002; 8(10): 1253-1266.

[14]

ChengW, GaoA, LinH, ZhangW. Novel roles of METTL1/WDR4 in tumor via m(7)G methylation. Mol Ther Oncolytics. 2022; 26: 27-34.

[15]

FuruichiY. Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad Ser B Phys Biol Sci. 2015; 91(8): 394-409.

[16]

GaussDH, Grüter F, SprinzlM. Compilation of tRNA sequences. Nucleic Acids Res. 1979; 6(1): r1-r19.

[17]

MotorinY, HelmM. RNA nucleotide methylation. Wiley Interdiscip Rev RNA. 2011; 2(5): 611-631.

[18]

ZhangLS, LiuC, MaH, et al. Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell. 2019; 74(6): 1304-1316.e8.

[19]

BouliasK, GreerEL. Put the pedal to the METTL1: adding internal m(7)G increases mRNA translation efficiency and augments miRNA processing. Mol Cell. 2019; 74(6): 1105-1107.

[20]

AlexandrovA, Grayhack EJ, PhizickyEM. tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p. RNA. 2005; 11(5): 821-830.

[21]

LinS, LiuQ, LelyveldVS, Choe J, SzostakJW, GregoryRI. Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018; 71(2): 244-255.e5.

[22]

TomikawaC. 7-Methylguanosine modifications in transfer RNA (tRNA). Int J Mol Sci. 2018; 19(12): 4080.

[23]

MalbecL, ZhangT, ChenYS, et al. Dynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translation. Cell Res. 2019; 29(11): 927-941.

[24]

PandolfiniL, Barbieri I, BannisterAJ, et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell. 2019; 74(6): 1278-1290.e9.

[25]

HaagS, Kretschmer J, BohnsackMT. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA. 2015; 21(2): 180-187.

[26]

Gonatopoulos-PournatzisT, DunnS, BoundsR, CowlingVH. RAM/Fam103a1 is required for mRNA cap methylation. Mol Cell. 2011; 44(4): 585-596.

[27]

VarshneyD, Lombardi O, SchweikertG, DunnS, SuskaO, CowlingVH. mRNA Cap methyltransferase, RNMT-RAM, promotes RNA Pol II-dependent transcription. Cell Rep. 2018; 23(5): 1530-1542.

[28]

Bueren-CalabuigJA, G Bage M, CowlingVH, PisliakovAV. Mechanism of allosteric activation of human mRNA cap methyltransferase (RNMT) by RAM: insights from accelerated molecular dynamics simulations. Nucleic Acids Res. 2019; 47(16): 8675-8692.

[29]

Picard-JeanF, BrandC, Tremblay-LétourneauM, et al. 2′-O-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO. PLoS One. 2018; 13(3): e0193804.

[30]

AlexandrovA, Chernyakov I, GuW, et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell. 2006; 21(1): 87-96.

[31]

Ruiz-ArroyoVM, RajR, BabuK, Onolbaatar O, RobertsPH, NamY. Structures and mechanisms of tRNA methylation by METTL1-WDR4. Nature. 2023; 613(7943): 383-390.

[32]

LiuL, Michowski W, KolodziejczykA, SicinskiP. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol. 2019; 21(9): 1060-1067.

[33]

HanahanD, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-674.

[34]

JiangH, LiuY, SongH, et al. METTL1 promotes colorectal cancer cell proliferation by attenuating CHEK2-induced G1/S phase arrest. Genes Dis. 2024; 11(2): 579-581.

[35]

ChenZ, ZhuW, ZhuS, et al. METTL1 promotes hepatocarcinogenesis via m(7) G tRNA modification-dependent translation control. Clin Transl Med. 2021; 11(12): e661.

[36]

ZhangM, KanD, ZhangB, et al. P300/SP1 complex mediating elevated METTL1 regulates CDK14 mRNA stability via internal m7G modification in CRPC. J Exp Clin Cancer Res. 2023; 42(1): 215.

[37]

ChenXZ, LiXM, XuSJ, et al. TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m(7)G methylation of ATF5 mRNA. Cell Death Differ. 2023; 30(7): 1786-1798.

[38]

DuD, ZhouM, JuC, et al. METTL1-mediated tRNA m(7)G methylation and translational dysfunction restricts breast cancer tumorigenesis by fueling cell cycle blockade. J Exp Clin Cancer Res. 2024; 43(1): 154.

[39]

NguyenDX, Massagué J. Genetic determinants of cancer metastasis. Nat Rev Genet. 2007; 8(5): 341-352.

[40]

TianQH, ZhangMF, ZengJS, et al. METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med (Berl). 2019; 97(11): 1535-1545.

[41]

XuF, CaiD, LiuS, et al. N7-methylguanosine regulatory genes well represented by METTL1 define vastly different prognostic, immune and therapy landscapes in adrenocortical carcinoma. Am J Cancer Res. 2023; 13(2): 538-568.

[42]

WangZ, YuP, ZouY, et al. METTL1/WDR4-mediated tRNA m(7)G modification and mRNA translation control promote oncogenesis and doxorubicin resistance. Oncogene. 2023; 42(23): 1900-1912.

[43]

MaJ, HanH, HuangY, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021; 29(12): 3422-3435.

[44]

YingX, LiuB, YuanZ, et al. METTL1-m(7) G-EGFR/EFEMP1 axis promotes the bladder cancer development. Clin Transl Med. 2021; 11(12): e675.

[45]

XieH, WangM, YuH, et al. METTL1 drives tumor progression of bladder cancer via degrading ATF3 mRNA in an m(7)G-modified miR-760-dependent manner. Cell Death Discov. 2022; 8(1): 458.

[46]

ChenJ, ZhouQ, LiS, et al. Metabolic reprogramming driven by METTL1-mediated tRNA m7G modification promotes acquired anlotinib resistance in oral squamous cell carcinoma. Transl Res. 2024; 268: 28-39.

[47]

ChenB, JiangW, HuangY, et al. N(7)-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma. Oncogene. 2022; 41(15): 2239-2253.

[48]

SengerDR, DavisGE. Angiogenesis. Cold Spring Harb Perspect Biol. 2011; 3(8): a005090.

[49]

WangQ, ChenC, DingQ, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020; 69(7): 1193-1205.

[50]

DengY, ZhouZ, JiW, LinS, WangM. METTL1-mediated m(7)G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res Ther. 2020; 11(1): 306.

[51]

DengY, ZhouZ, LinS, YuB. METTL1 limits differentiation and functioning of EPCs derived from human-induced pluripotent stem cells through a MAPK/ERK pathway. Biochem Biophys Res Commun. 2020; 527(3): 791-798.

[52]

ZhaoY, KongL, PeiZ, et al. m7G methyltransferase METTL1 promotes post-ischemic angiogenesis via promoting VEGFA mRNA translation. Front Cell Dev Biol. 2021; 9: 642080.

[53]

SladeD. PARP and PARG inhibitors in cancer treatment. Genes Dev. 2020; 34(5-6): 360-394.

[54]

HeM, WangY, XieJ, et al. M(7)G modification of FTH1 and pri-miR-26a regulates ferroptosis and chemotherapy resistance in osteosarcoma. Oncogene. 2024; 43(5): 341-353.

[55]

HuangM, LongJ, YaoZ, et al. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Res. 2023; 83(1): 89-102.

[56]

LiangC, ZhangX, YangM, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019; 31(51): e1904197.

[57]

BinnewiesM, Roberts EW, KerstenK, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018; 24(5): 541-550.

[58]

SurendranV, Rutledge D, ColmonR, et al. A novel tumor-immune microenvironment (TIME)-on-Chip mimics three dimensional neutrophil-tumor dynamics and neutrophil extracellular traps (NETs)-mediated collective tumor invasion. Biofabrication. 2021; 13(3).

[59]

LiuH, ZengX, RenX, et al. Targeting tumour-intrinsic N(7)-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy. Gut. 2023; 72(8): 1555-1567.

[60]

ZengX, LiaoG, LiS, et al. Eliminating METTL1-mediated accumulation of PMN-MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatology. 2023; 77(4): 1122-1138.

[61]

García-VílchezR, Añazco-GuenkovaAM, DietmannS, et al. METTL1 promotes tumorigenesis through tRNA-derived fragment biogenesis in prostate cancer. Mol Cancer. 2023; 22(1): 119.

[62]

YuS, SunZ, JuT, et al. The m7G methyltransferase mettl1 drives cardiac hypertrophy by regulating SRSF9-mediated splicing of NFATc4. Adv Sci (Weinh). 2024:e2308769.

[63]

DaiZ, LiuH, LiaoJ, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021; 81(16): 3339-3355.e8.

[64]

LiuY, YangC, ZhaoY, Chi Q, WangZ, SunB. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging (Albany NY). 2019; 11(24): 12328-12344.

[65]

LiuY, ZhuE, LeiY, et al. Diagnostic values of METTL1-related genes and immune characteristics in systemic lupus erythematosus. J Inflamm Res. 2023; 16: 5367-5383.

[66]

SiegelRL, Giaquinto AN, JemalA. Cancer statistics, 2024. CA Cancer J Clin. 2024; 74(1): 12-49.

[67]

MiyataH, Yoshioka A, YamasakiM, et al. Tumor budding in tumor invasive front predicts prognosis and survival of patients with esophageal squamous cell carcinomas receiving neoadjuvant chemotherapy. Cancer. 2009; 115(14): 3324-3334.

[68]

HanH, YangC, MaJ, et al. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun. 2022; 13(1): 1478.

[69]

BrockKK, DawsonLA. Adaptive management of liver cancer radiotherapy. Semin Radiat Oncol. 2010; 20(2): 107-115.

[70]

LiaoJ, YiY, YueX, et al. Methyltransferase 1 is required for nonhomologous end-joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology. 2023; 77(6): 1896-1910.

[71]

KudoM, FinnRS, QinS, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018; 391(10126): 1163-1173.

[72]

JobS, RapoudD, Dos SantosA, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology. 2020; 72(3): 965-981.

[73]

Garza TreviñoEN, González PD, Valencia SalgadoCI, Martinez GarzaA. Effects of pericytes and colon cancer stem cells in the tumor microenvironment. Cancer Cell Int. 2019; 19: 173.

[74]

ElorantaS, SmedbyKE, DickmanPW, Andersson TM. Cancer survival statistics for patients and healthcare professionals—a tutorial of real-world data analysis. J Intern Med. 2021; 289(1): 12-28.

[75]

KinoH, NakanoM, KanamoriA, et al. Gastric adenocarcinoma of the fundic gland type after endoscopic therapy for metachronous gastric cancer. Intern Med. 2018; 57(6): 795-800.

[76]

MaX, QiuS, TangX, et al. TSPAN31 regulates the proliferation, migration, and apoptosis of gastric cancer cells through the METTL1/CCT2 pathway. Transl Oncol. 2022; 20: 101423.

[77]

TapWD, EilberFC, GintherC, et al. Evaluation of well-differentiated/de-differentiated liposarcomas by high-resolution oligonucleotide array-based comparative genomic hybridization. Genes Chromosomes Cancer. 2011; 50(2): 95-112.

[78]

SiegelRL, MillerKD, WagleNS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73(1): 17-48.

[79]

ChaoYL, PecotCV. Targeting epigenetics in lung cancer. Cold Spring Harb Perspect Med. 2021; 11(6): a038000.

[80]

LiY, ZhaoZ, XuC, ZhouZ, ZhuZ, YouT. HMGA2 induces transcription factor Slug expression to promote epithelial-to-mesenchymal transition and contributes to colon cancer progression. Cancer Lett. 2014; 355(1): 130-140.

[81]

AntoniS, FerlayJ, SoerjomataramI, ZnaorA, JemalA, BrayF. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017; 71(1): 96-108.

[82]

WitjesJA, Compérat E, CowanNC, et al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur Urol. 2014; 65(4): 778-792.

[83]

BardelliA, Jänne PA. The road to resistance: eGFR mutation and cetuximab. Nat Med. 2012; 18(2): 199-200.

[84]

YuanX, YuL, LiJ, et al. ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res. 2013; 73(12): 3625-3637.

[85]

YingX, HuW, HuangY, et al. A novel tsRNA, m(7)G-3′ tiRNA Lys(TTT), promotes bladder cancer malignancy via regulating ANXA2 phosphorylation. Adv Sci (Weinh). 2024:e2400115.

[86]

AttardG, ParkerC, EelesRA, et al. Prostate cancer. Lancet. 2016; 387(10013): 70-82.

[87]

EttaiebM, Kerkhofs T, van EngelandM, HaakH. Past, present and future of epigenetics in adrenocortical carcinoma. Cancers (Basel). 2020; 12(5): 1218.

[88]

PittawayJ, GuastiL. Pathobiology and genetics of adrenocortical carcinoma. J Mol Endocrinol. 2019; 62(2): R105-R119.

[89]

OrellanaEA, LiuQ, YankovaE, et al. METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021; 81(16): 3323-3338.e14.

[90]

ChenJ, LiK, ChenJ, et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun (Lond). 2022; 42(3): 223-244.

[91]

BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394-424.

[92]

WuLR, LiuYT, JiangN, et al. Ten-year survival outcomes for patients with nasopharyngeal carcinoma receiving intensity-modulated radiotherapy: an analysis of 614 patients from a single center. Oral Oncol. 2017; 69: 26-32.

[93]

ChowL. Head and neck cancer. N Engl J Med. 2020; 382(1): 60-72.

[94]

HuangZ, SuQ, LiW, RenH, HuangH, Wang A. Suppressed mitochondrial respiration via NOX5-mediated redox imbalance contributes to the antitumor activity of anlotinib in oral squamous cell carcinoma. J Genet Genomics. 2021; 48(7): 582-594.

[95]

EffiomOA, Ogundana OM, AkinshipoAO, AkintoyeSO. Ameloblastoma: current etiopathological concepts and management. Oral Dis. 2018; 24(3): 307-316.

[96]

WangY, XiongG, CaiW, TaoQ. METTL1 facilitates ameloblastoma invasive growth via MAPK signaling pathway. Gene. 2024; 905: 148234.

[97]

SiegelRL, MillerKD, FuchsHE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72(1): 7-33.

[98]

JohnstonS, ToiM, O’ShaughnessyJ, et al. Abemaciclib plus endocrine therapy for hormone receptor-positive, HER2-negative, node-positive, high-risk early breast cancer (monarchE): results from a preplanned interim analysis of a randomised, open-label, phase 3 trial. Lancet Oncol. 2023; 24(1): 77-90.

[99]

LiT, ChenZ, WangZ, Lu J, ChenD. Combined signature of N7-methylguanosine regulators with their related genes and the tumor microenvironment: a prognostic and therapeutic biomarker for breast cancer. Front Immunol. 2023; 14: 1260195.

[100]

ZhengP, LiN, ZhanX. Ovarian cancer subtypes based on the regulatory genes of RNA modifications: novel prediction model of prognosis. Front Endocrinol (Lausanne). 2022; 13: 972341.

[101]

CarmelietP, JainRK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011; 473(7347): 298-307.

[102]

MengY, ShangF, ZhuY. miR-124 participates in the proliferation and differentiation of brain glioma stem cells through regulating Nogo/NgR expression. Exp Ther Med. 2019; 18(4): 2783-2788.

[103]

LiL, YangY, WangZ, Xu C, HuangJ, LiG. Prognostic role of METTL1 in glioma. Cancer Cell Int. 2021; 21(1): 633.

[104]

MarisJM, Hogarty MD, BagatellR, CohnSL. Neuroblastoma. Lancet. 2007; 369(9579): 2106-2120.

[105]

HuangY, MaJ, YangC, et al. METTL1 promotes neuroblastoma development through m(7)G tRNA modification and selective oncogenic gene translation. Biomark Res. 2022; 10(1): 68.

[106]

GillJ, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 2021; 18(10): 609-624.

[107]

HarrisonDJ, GellerDS, GillJD, Lewis VO, GorlickR. Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticancer Ther. 2018; 18(1): 39-50.

[108]

SerraM, Hattinger CM. The pharmacogenomics of osteosarcoma. Pharmacogenomics J. 2017; 17(1): 11-20.

[109]

FrieriM. Mechanisms of disease for the clinician: systemic lupus erythematosus. Ann Allergy Asthma Immunol. 2013; 110(4): 228-232.

[110]

BastaF, FasolaF, TriantafylliasK, SchwartingA. Systemic lupus erythematosus (SLE) therapy: the old and the new. Rheumatol Ther. 2020; 7(3): 433-446.

[111]

BreitkopfDM, Jankowski V, OhlK, et al. The YB-1: notch-3 axis modulates immune cell responses and organ damage in systemic lupus erythematosus. Kidney Int. 2020; 97(2): 289-303.

[112]

SalmonJE, Kimberly RP, GibofskyA, FotinoM. Defective mononuclear phagocyte function in systemic lupus erythematosus: dissociation of Fc receptor-ligand binding and internalization. J Immunol. 1984; 133(5): 2525-2531.

[113]

XiaoZX, HuX, ZhangX, et al. High salt diet accelerates the progression of murine lupus through dendritic cells via the p38 MAPK and STAT1 signaling pathways. Signal Transduct Target Ther. 2020; 5(1): 34.

[114]

JenksSA, Cashman KS, ZumaqueroE, et al. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 2018; 49(4): 725-739.e6.

[115]

MoultonVR, TsokosGC. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest. 2015; 125(6): 2220-2227.

[116]

HauserSL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 2006; 52(1): 61-76.

[117]

AlcinaA, FedetzM, FernándezO, et al. Identification of a functional variant in the KIF5A-CYP27B1-METTL1-FAM119B locus associated with multiple sclerosis. J Med Genet. 2013; 50(1): 25-33.

[118]

SundqvistE, Bäärnhielm M, AlfredssonL, HillertJ, OlssonT, KockumI. Confirmation of association between multiple sclerosis and CYP27B1. Eur J Hum Genet. 2010; 18(12): 1349-1352.

[119]

MeyerMB, PikeJW. Genomic mechanisms controlling renal vitamin D metabolism. J Steroid Biochem Mol Biol. 2023; 228: 106252.

[120]

HunterDJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393(10182): 1745-1759.

[121]

DuanY, YuC, YanM, OuyangY, NiS. m6A regulator-mediated RNA methylation modification patterns regulate the immune microenvironment in osteoarthritis. Front Genet. 2022; 13: 921256.

[122]

ChenZ, HuaY. Identification of m7G-related hub biomarkers and m7G regulator expression pattern in immune landscape during the progression of osteoarthritis. Cytokine. 2023; 170: 156313.

[123]

KnopmanDS, AmievaH, PetersenRC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021; 7(1): 33.

[124]

BabcockKR, PageJS, FallonJR, Webb AE. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports. 2021; 16(4): 681-693.

[125]

LiQ, LiuH, LiL, et al. Mettl1-mediated internal m7G methylation of Sptbn2 mRNA elicits neurogenesis and anti-alzheimer’s disease. Cell Biosci. 2023; 13(1): 183.

[126]

NakamuraM, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018; 15(7): 387-407.

[127]

BraunwaldE. The war against heart failure: the Lancet lecture. Lancet. 2015; 385(9970): 812-824.

[128]

BäumerN, Tickenbrock L, TschanterP, et al. Inhibitor of cyclin-dependent kinase (CDK) interacting with cyclin A1 (INCA1) regulates proliferation and is repressed by oncogenic signaling. J Biol Chem. 2011; 286(32): 28210-28222.

[129]

YuST, SunZY, LiN, et al. Mettl1 knockdown alleviates cardiac I/R injury in mice by inactivating the Mettl1-CYLD-P53 positive feedback loop. Acta Pharmacol Sin. 2024.

[130]

EspelandT, LundeIG, H AmundsenB, Gullestad L, AakhusS. Myocardial fibrosis. Tidsskr Nor Laegeforen. 2018; 138(16).

[131]

FrangogiannisNG. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol. 2022; 19(7): 435-455.

[132]

WangL, ZhouJ, KongL, et al. Fibroblast-specific knockout of METTL1 attenuates myocardial infarction-induced cardiac fibrosis. Life Sci. 2023; 329: 121926.

[133]

FuY, JiangF, ZhangX, et al. Perturbation of METTL1-mediated tRNA N(7)-methylguanosine modification induces senescence and aging. Nat Commun. 2024; 15(1): 5713.

[134]

LiQ, JiangS, LeiK, et al. Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism. J Clin Invest. 2024; 134(20): e177220.

[135]

KanekoS, Miyoshi K, TomuroK, et al. Mettl1-dependent m(7)G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster. Nat Commun. 2024; 15(1): 8147.

[136]

LiJ, WangL, HahnQ, et al. Structural basis of regulated m(7)G tRNA modification by METTL1-WDR4. Nature. 2023; 613(7943): 391-397.

[137]

SelbergS, Blokhina D, AatonenM, et al. Discovery of small molecules that activate RNA methylation through cooperative binding to the METTL3-14-WTAP complex active site. Cell Rep. 2019; 26(13): 3762-3771.e5.

[138]

BediRK, HuangD, EberleSA, et al. Small-molecule inhibitors of METTL3, the major human epitranscriptomic writer. ChemMedChem. 2020; 15(9): 744-748.

[139]

ZengY, WangS, GaoS, et al. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biol. 2018; 16(9): e2006092.

[140]

MengJ, LuZ, LiuH, et al. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods. 2014; 69(3): 274-281.

[141]

MarchandV, AyadiL, ErnstF, et al. AlkAniline-Seq: profiling of m(7) G and m(3) C RNA modifications at single nucleotide resolution. Angew Chem Int Ed Engl. 2018; 57(51): 16785-16790.

[142]

ZhengG, QinY, ClarkWC, et al. Efficient and quantitative high-throughput tRNA sequencing. Nat Methods. 2015; 12(9): 835-837.

[143]

ZhangLS, JuCW, LiuC, et al. m(7)G-quant-seq: quantitative detection of RNA internal N(7)-methylguanosine. ACS Chem Biol. 2022; 17(12): 3306-3312.

[144]

LinS, LiuQ, JiangYZ, Gregory RI. Nucleotide resolution profiling of m(7)G tRNA modification by TRAC-Seq. Nat Protoc. 2019; 14(11): 3220-3242.

[145]

SchapiraM, Calabrese MF, BullockAN, et al. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019; 18(12): 949-963.

[146]

NaiF, Flores Espinoza MP, InvernizziA, et al. Small-molecule inhibitors of the m7G-RNA writer METTL1. ACS Bio Med Chem Au. 2024; 4(2): 100-110.

[147]

RenaudJP, ChungCW, DanielsonUH, et al. Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov. 2016; 15(10): 679-698.

[148]

FischerTR, Meidner L, SchwickertM, et al. Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Res. 2022; 50(8): 4216-4245.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/