METTL14-mediated m6A modification of ZFP14 inhibits clear cell renal cell carcinoma progression via promoting STAT3 ubiquitination

Zhuonan Liu , Tianshui Sun , Zhe Zhang , Chiyuan Piao , Chuize Kong , Xiaotong Zhang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70232

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70232 DOI: 10.1002/ctm2.70232
RESEARCH ARTICLE

METTL14-mediated m6A modification of ZFP14 inhibits clear cell renal cell carcinoma progression via promoting STAT3 ubiquitination

Author information +
History +
PDF

Abstract

•ZFP14 under-expression is associated with ccRCC tumourigenesis and progression.

•METTL14-mediated m6A enhances ZFP14 mRNA stability and expression with IGF2BP2 as the reader in ccRCC.

•ZFP14 promotes the degradation of STAT3 by enhancing its K48-linked ubiquitination, inhibiting ccRCC progression.

Keywords

ccRCC / m6A / METTL14 / STAT3 / ubiquitination / ZFP14

Cite this article

Download citation ▾
Zhuonan Liu, Tianshui Sun, Zhe Zhang, Chiyuan Piao, Chuize Kong, Xiaotong Zhang. METTL14-mediated m6A modification of ZFP14 inhibits clear cell renal cell carcinoma progression via promoting STAT3 ubiquitination. Clinical and Translational Medicine, 2025, 15(2): e70232 DOI:10.1002/ctm2.70232

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SceloG, LaroseTL. Epidemiology and risk factors for kidney cancer. J Clin Oncol. 2018; 36(36): JCO2018791905.

[2]

SungH, FerlayJ, SiegelRL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3): 209-249.

[3]

MillerKD, Nogueira L, DevasiaT, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022; 72(5): 409-436.

[4]

RickettsCJ, De Cubas AA, FanH, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018; 23(12): 3698.

[5]

HsiehJJ, PurdueMP, SignorettiS, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017; 3: 17009.

[6]

PezzicoliG, GaniniC, Re SartoGV, Pirovano M, CosmaiL, PortaC. The treatment of metastatic renal cell carcinoma: an update. G Ital Nefrol. 2023; 40(Suppl 81).

[7]

KauneM, Bokemeyer C, von AmsbergG. Advanced renal cell carcinoma—an overview of current systemic therapy. Dtsch Med Wochenschr. 2024; 149(4): 180-190.

[8]

LiY, LihTM, DhanasekaranSM, et al. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell. 2023; 41(1): 139-163. e17.

[9]

HanD, XuMM. RNA modification in the immune system. Annu Rev Immunol. 2023; 41: 73-98.

[10]

ZaccaraS, RiesRJ, JaffreySR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019; 20(10): 608-624.

[11]

WangT, KongS, TaoM, JuS. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020; 19(1): 88.

[12]

ZhangC, ChenL, LiuY, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics. 2021; 11(8): 3676-3693.

[13]

LiuZ, SunT, PiaoC, Zhang Z, KongC. METTL14-mediated N(6)-methyladenosine modification of ITGB4 mRNA inhibits metastasis of clear cell renal cell carcinoma. Cell Commun Signal. 2022; 20(1): 36.

[14]

MohibiS, ChenX, ZhangJ. ZFP14 regulates cancer cell growth and migration by modulating p53 protein stability as part of the MDM2 E3 ubiquitin ligase complex. Cancers (Basel). 2022; 14(21).

[15]

DongY, ChenJ, ChenY, Liu S. Targeting the STAT3 oncogenic pathway: cancer immunotherapy and drug repurposing. Biomed Pharmacother. 2023; 167: 115513.

[16]

MayrC. What are 3’ UTRs doing?. Cold Spring Harb Perspect Biol. 2019; 11(10).

[17]

ZhangL, LuoX, QiaoS. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer. 2022; 127(1): 30-42.

[18]

KessenbrockK, PlaksV, WerbZ. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141(1): 52-67.

[19]

GobinE, Bagwell K, WagnerJ, et al. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer. 2019; 19(1): 581.

[20]

NagasakaH, Kishida T, KouroT, et al. MMP1, IL-1beta, sTNFR-1, and IL-6 are prognostic factors for patients with unresectable or metastatic renal cell carcinoma treated with immune checkpoint inhibitors. Int J Clin Oncol. 2024;29(6):832-839.

[21]

XieY, SahinM, SinhaS, et al. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes. Nat Cancer. 2022; 3(2): 188-202.

[22]

BassiouniW, AliMAM, SchulzR. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021; 288(24): 7162-7182.

[23]

AoYQ, GaoJ, JinC, et al. ASCC3 promotes the immunosuppression and progression of non-small cell lung cancer by impairing the type I interferon response via CAND1-mediated ubiquitination inhibition of STAT3. J Immunother Cancer. 2023; 11(12).

[24]

LiuH, SunL, ZhaoH, et al. Proteinase 3 depletion attenuates leukemia by promoting myeloid differentiation. Cell Death Differ. 2024.

[25]

ChenY, HuangL, GanRH, et al. IL-8 activates fibroblasts to promote the invasion of HNSCC cells via STAT3-MMP1. Cell Death Discov. 2024; 10(1): 65.

[26]

GongX, SunS, YangY, et al. Osteoblastic STAT3 is crucial for orthodontic force driving alveolar bone remodeling and tooth movement. J Bone Miner Res. 2023; 38(1): 214-227.

[27]

RobinsonRL, SharmaA, BaiS, et al. Comparative STAT3-regulated gene expression profile in renal cell carcinoma subtypes. Front Oncol. 2019; 9: 72.

[28]

DagarG, KumarR, YadavKK, Singh M, PanditaTK. Ubiquitination and deubiquitination: implications on cancer therapy. Biochim Biophys Acta Gene Regul Mech. 2023; 1866(4): 194979.

[29]

MakhovP, JoshiS, GhataliaP, Kutikov A, UzzoRG, KolenkoVM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther. 2018; 17(7): 1355-1364.

[30]

WuC, LiL, TangQ, et al. Role of m(6)A modifications in immune evasion and immunotherapy. Med Oncol. 2024; 41(6): 159.

[31]

DengX, QingY, HorneD, Huang H, ChenJ. The roles and implications of RNA m(6)A modification in cancer. Nat Rev Clin Oncol. 2023; 20(8): 507-526.

[32]

GeisslerR, Grimson A. A position-specific 3’UTR sequence that accelerates mRNA decay. RNA Biol. 2016; 13(11): 1075-1077.

[33]

HongD, JeongS. 3’UTR Diversity: expanding repertoire of RNA alterations in human mRNAs. Mol Cells. 2023; 46(1): 48-56.

[34]

JiangX, LiuB, NieZ, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021; 6(1): 74.

[35]

XuY, ZhouJ, LiL, et al. FTO-mediated autophagy promotes progression of clear cell renal cell carcinoma via regulating SIK2 mRNA stability. Int J Biol Sci. 2022; 18(15): 5943-5962.

[36]

ZengX, ChenK, LiL, et al. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic Biol Med. 2022; 184: 135-147.

[37]

ZhuD, LiuY, ChenJ, et al. The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma. J Transl Med. 2022; 20(1): 298.

[38]

YangJG, SunB, WangZ, et al. Exosome-targeted delivery of METTL14 regulates NFATc1 m6A methylation levels to correct osteoclast-induced bone resorption. Cell Death Dis. 2023; 14(11): 738.

[39]

JinD, GuoJ, WuY, et al. m(6)A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020; 19(1): 40.

[40]

PanY, GuY, LiuT, et al. Epitranscriptic regulation of HRAS by N(6)-methyladenosine drives tumor progression. Proc Natl Acad Sci U S A. 2023; 120(14): e2302291120.

[41]

JuJ, AoyamaT, YashiroY, Yamashita S, KuroyanagiH, TomitaK. Structure of the Caenorhabditis elegans m6A methyltransferase METT10 that regulates SAM homeostasis. Nucleic Acids Res. 2023; 51(5): 2434-2446.

[42]

LiZ, FengY, HanH, et al. A stapled peptide inhibitor targeting the binding interface of N6-adenosine-methyltransferase subunits METTL3 and METTL14 for cancer therapy. Angew Chem Int Ed Engl. 2024:e202402611.

[43]

DuW, HuangY, ChenX, et al. Discovery of a PROTAC degrader for METTL3-METTL14 complex. Cell Chem Biol. 2024; 31(1): 177-183. e17.

[44]

ErraniF, Invernizzi A, HerokM, et al. Proteolysis targeting chimera degraders of the METTL3-14 m(6)A-RNA methyltransferase. JACS Au. 2024; 4(2): 713-729.

[45]

RaneSS, Shellard E, AdamsonA, EyreS, WarrenRB. IL23R mutations associated with decreased risk of psoriasis lead to the differential expression of genes implicated in the disease. Exp Dermatol. 2024; 33(9): e15180.

[46]

ZhangJ, WangQ, QiS, et al. An oncogenic enhancer promotes melanoma progression via regulating ETV4 expression. J Transl Med. 2024; 22(1): 547.

[47]

VarelaT, Conceicao N, LaizeV, CancelaML. Transcriptional regulation of human DUSP4 gene by cancer-related transcription factors. J Cell Biochem. 2021; 122(10): 1556-1566.

[48]

ZhangF, ZhouX, ZouH, et al. SAA1 is transcriptionally activated by STAT3 and accelerates renal interstitial fibrosis by inducing endoplasmic reticulum stress. Exp Cell Res. 2021; 408(1): 112856.

[49]

ChenW, PatelD, JiaY, et al. MARCH8 suppresses tumor metastasis and mediates degradation of STAT3 and CD44 in breast cancer cells. Cancers (Basel). 2021; 13(11).

[50]

La SalaG, Michiels C, KukenshonerT, et al. Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. Nat Commun. 2020; 11(1): 4115.

[51]

HallJ, ZhangZ, BhattacharyaS, et al. Oligo-PROTAC strategy for cell-selective and targeted degradation of activated STAT3. Mol Ther Nucleic Acids. 2024; 35(1): 102137.

[52]

XieY, ZhuS, ChenL, et al. An isoxazoloquinone derivative inhibits tumor growth by targeting STAT3 and triggering its ubiquitin-dependent degradation. Cancers (Basel). 2023; 15(9).

[53]

HuH, BaiH, HuangL, Yang B, ZhaoH. Eupalinolide J inhibits cancer metastasis by promoting STAT3 ubiquitin-dependent degradation. Molecules. 2023; 28(7).

[54]

ChenY, ZhuY, ShengY, et al. SIRT1 downregulated FGB expression to inhibit RCC tumorigenesis by destabilizing STAT3. Exp Cell Res. 2019; 382(2): 111466.

[55]

ZhouM, ZhangY, ZhangQ, Tong Y. METTL14-mediated m6A modification upregulated SOCS3 expression alleviates thyroid cancer progression by regulating the JAK2/STAT3 pathway. Mol Cell Probes. 2024:101987.

[56]

LiangH, ZhangC, HuM, et al. ALKBH5-mediated m(6)A modification of XBP1 facilitates NSCLC progression through the IL-6-JAK-STAT3 pathway. Mol Carcinog. 2024.

[57]

XiongJ, HeJ, ZhuJ, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022; 82(9): 1660-1677. e10.

[58]

HuaX, XuQ, WuR, et al. ALKBH5 promotes non-small cell lung cancer progression and susceptibility to anti-PD-L1 therapy by modulating interactions between tumor and macrophages. J Exp Clin Cancer Res. 2024; 43(1): 164.

[59]

HuangJ, SunW, WangZ, et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J Exp Clin Cancer Res. 2022; 41(1): 42.

[60]

ZhangY, YangL, OuY, et al. Combination of AAV-delivered tumor suppressor PTEN with anti-PD-1 loaded depot gel for enhanced antitumor immunity. Acta Pharm Sin B. 2024; 14(1): 350-364.

[61]

TangX, LuH, TarwaterPM, Silverberg DL, SchorlC, RamratnamB. Adeno-associated virus (AAV)-delivered exosomal TAT and BiTE molecule CD4-alphaCD3 facilitate the elimination of CD4 T cells harboring latent HIV-1. Microorganisms. 2024; 12(8).

[62]

HeX, UripBA, ZhangZ, Ngan CC, FengB. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med (Berl). 2021; 99(5): 593-617.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/