SHP2 inhibition and adjuvant therapy synergistically target KIT-mutant GISTs via ERK1/2-regulated GSK3β/cyclin D1 pathway

Chunxiao He , Jiaying Yu , Shuang Mao , Shaohua Yang , Xianming Jiang , Lei Huang , Mingzhe Li , Yulong He , Xinhua Zhang , Xi Xiang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70231

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70231 DOI: 10.1002/ctm2.70231
RESEARCH ARTICLE

SHP2 inhibition and adjuvant therapy synergistically target KIT-mutant GISTs via ERK1/2-regulated GSK3β/cyclin D1 pathway

Author information +
History +
PDF

Abstract

•SHP2 plays a pivotal role as a signal transducer in the MAPK/ERK signaling pathway.

•SHP2 controls the cell cycle via the GSK3β/cyclin D1/Rb pathway in oncogenic KIT-driven GIST.

•Inhibition of SHP2 synergizes with adjuvant therapy drugs in inhibiting KIT-driven GIST with primary and secondary mutations both in vitro and in vivo.

Keywords

drug resistance / GIST / imatinib / KIT / SHP2

Cite this article

Download citation ▾
Chunxiao He, Jiaying Yu, Shuang Mao, Shaohua Yang, Xianming Jiang, Lei Huang, Mingzhe Li, Yulong He, Xinhua Zhang, Xi Xiang. SHP2 inhibition and adjuvant therapy synergistically target KIT-mutant GISTs via ERK1/2-regulated GSK3β/cyclin D1 pathway. Clinical and Translational Medicine, 2025, 15(2): e70231 DOI:10.1002/ctm2.70231

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DermawanJK, RubinBP. Molecular pathogenesis of gastrointestinal stromal tumor: a paradigm for personalized medicine. Annu Rev Pathol. 2022; 17(1): 323-344.

[2]

JonesRL, GolcicM. Recent advances in the systemic treatment of gastrointestinal stromal tumors. Cancer Biol Med. 2023; 20(10): 701-705.

[3]

WardelmannE, Merkelbach-Bruse S, PaulsK, et al. Polyclonal evolution of multiple secondary mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res. 2006; 12(6): 1743-1749.

[4]

LieglB, KeptenI, LeC, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008; 216(1): 64-74.

[5]

DesaiJ, Shankar S, HeinrichMC, et al. Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res. 2007; 13(18): 5398-5405.

[6]

MolCD, DouganDR, SchneiderTR, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem. 2004; 279(30): 31655-31663.

[7]

SerranoC, Mariño-Enríquez A, TaoDL, et al. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br J Cancer. 2019; 120(6): 612-620.

[8]

HirotaS, Isozaki K, MoriyamaY, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998; 279(5350): 577-580.

[9]

ZhaoZ, BournePE. Overview of current type I/II kinase inhibitors. In: Shapiro P, ed. Next generation kinase inhibitors: moving beyond the ATP binding/catalytic sites. Springer International Publishing: Cham; 2020: 13-28.

[10]

TreiberDK, ShahNP. Ins and outs of kinase DFG Motifs. Chem Biol. 2013; 20(6): 745-746.

[11]

HariSB, Merritt EA, MalyDJ. Sequence determinants of a specific inactive protein kinase conformation. Chem Biol. 2013; 20(6): 806-815.

[12]

YunC-H, Mengwasser KE, TomsAV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Nat Acad Sci USA. 2008; 105(6): 2070-2075.

[13]

SmithBD, Kaufman MD, LuW-P, et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell. 2019; 35(5): 9.

[14]

SerranoC, GeorgeS. Recent advances in the treatment of gastrointestinal stromal tumors. Ther Adv Med Oncol. 2014; 6: 115-127.

[15]

HeC, WangZ, YuJ, MaoS, XiangX. Current drug resistance mechanisms and treatment options in gastrointestinal stromal tumors: summary and update. Curr Treat Options Oncol. 2024; 25(11): 1390-1405.

[16]

SongY, ZhaoM, ZhangH, Yu B. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther. 2022; 230: 107966.

[17]

SodirNM, Pathria G, AdamkewiczJI, et al. SHP2: a pleiotropic target at the interface of cancer and its microenvironment. Cancer Discov. 2023; 13(11): 2339-2355.

[18]

HeCX, PengZ, ZhangD, et al. Sunitinib selectively targets leukemogenic signaling of mutant SHP2 in juvenile myelomonocytic leukemia. Biochem Pharmacol. 2023: 213:115588.

[19]

HofP, Pluskey S, Dhe-PaganonS, EckMJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998; 92(4): 441-450.

[20]

ChenY-NP, Lamarche MJ, ChanHoM, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016; 535(7610): 148-152.

[21]

MaliRS, MaP, ZengL-F, et al. Role of SHP2 phosphatase in KIT-induced transformation: identification of SHP2 as a druggable target in diseases involving oncogenic KIT. Blood. 2012; 120(13): 2669-2678.

[22]

ChaixA, Arcangeli M-L, LopezS, et al. KIT-D816V oncogenic activity is controlled by the juxtamembrane docking site Y568-Y570. Oncogene. 2014; 33(7): 872-881.

[23]

HeissE, MassonK, SundbergC, et al. Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of src family kinases and the protein tyrosine phosphatase SHP2. Blood. 2006; 108(5): 1542-1550.

[24]

NabingerSC, LiXJ, RamdasB, et al. The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo. Leukemia. 2013; 27(2): 398-408.

[25]

CorlessCL, Heinrich MC. Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol. 2008; 3: 557-586.

[26]

DuensingA, Medeiros F, McconartyB, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004; 23(22): 3999-4006.

[27]

DryJR, PaveyS, PratilasCA, et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res. 2010; 70(6): 2264-2273.

[28]

WagleM-C, Kirouac D, KlijnC, et al. A transcriptional MAPK pathway activity score (MPAS) is a clinically relevant biomarker in multiple cancer types. NPJ Precis Oncol. 2018; 2(1): 7.

[29]

JosephEW, Pratilas CA, PoulikakosPI, et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA. 2010; 107(33): 14903-14908.

[30]

ValvezanAJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat Metab. 2019; 1(3): 321-333.

[31]

WeisbergE, ManleyPW, BreitensteinW, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005; 7(2): 129-141.

[32]

SchaeferI-M, Hemming ML, LundbergMZ, et al. Concurrent inhibition of CDK2 adds to the anti-tumour activity of CDK4/6 inhibition in GIST. Br J Cancer. 2022; 127(11): 2072-2085.

[33]

GuoY, YangK, HarwalkarJ, et al. Phosphorylation of cyclin D1 at Thr 286 during S phase leads to its proteasomal degradation and allows efficient DNA synthesis. Oncogene. 2005; 24(16): 2599-2612.

[34]

OrC-H, ChangY, LinW-C, et al. Obatoclax, a pan-BCL-2 inhibitor, targets cyclin D1 for degradation to induce antiproliferation in human colorectal carcinoma cells. Int J Mol Sci. 2017; 18(1): 44.

[35]

Takahashi-YanagaF, Sasaguri T. GSK-3β regulates cyclin D1 expression: a new target for chemotherapy. Cell Signalling. 2008; 20(4): 581-589.

[36]

DingQ, XiaW, LiuJ-C, et al. Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol Cell. 2005; 19(2): 159-170.

[37]

HetmanM, HsuanS-L, HabasA, Higgins MJ, XiaZ. ERK1/2 antagonizes glycogen synthase kinase-3β-induced apoptosis in cortical neurons. J Biol Chem. 2002; 277(51): 49577-49584.

[38]

RehaniK, WangH, GarciaCA, Kinane DF, MartinM. Toll-like receptor-mediated production of IL-1Ra is negatively regulated by GSK3 via the MAPK ERK1/2. J Immunol. 2009; 182(1): 547-553.

[39]

CaraciF, GiliE, CalafioreM, et al. TGF-β1 targets the GSK-3β/β-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res. 2008; 57(4): 274-282.

[40]

KlugLR, Khosroyani HM, KentJD, Heinr. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol. 2022; 19(5): 328-341.

[41]

ZhiJ, YiJ, HouX, et al. Targeting SHP2 sensitizes differentiated thyroid carcinoma to the MEK inhibitor. Am J Cancer Res. 2022; 12(1): 247.

[42]

ChenC, CaoM, ZhuS, et al. Discovery of a novel inhibitor of the protein tyrosine phosphatase Shp2. Sci Rep. 2015; 5(1): 17626.

[43]

WangQ, PanW, WangS, et al. Protein tyrosine phosphatase SHP2 suppresses host innate immunity against influenza A virus by regulating EGFR-mediated signaling. J Virol. 2021; 95(6): 02001-02020.

[44]

YuanY, FanY, GaoZ, et al. SHP2 promotes proliferation of breast cancer cells through regulating cyclin D1 stability via the PI3K/AKT/GSK3β signaling pathway. Cancer Biol Med. 2020; 17(3): 707.

[45]

Ivins ZitoC, Kontaridis MI, FornaroM, FengG-S. SHP-2 regulates the phosphatidylinositide 3′-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol. 2004; 199(2): 227-236.

[46]

CunnickJM, DorseyJF, Munoz-AntoniaT, MeiL, WuJ. Requirement of SHP2 binding to Grb2-associated binder-1 for mitogen-activated protein kinase activation in response to lysophosphatidic acid and epidermal growth factor*. J Biol Chem. 2000; 275(18): 13842-13848.

[47]

AgazieYM, HaymanMJ. Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol Cell Biol. 2003; 23(21): 7875-7886.

[48]

HanafusaH, ToriiS, YasunagaT, Matsumoto K, NishidaE. Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor sprouty *. J Biol Chem. 2004; 279(22): 22992-22995.

[49]

BundaS, Burrell K, HeirP, et al. Inhibition of SHP2-mediated dephosphorylation of ras suppresses oncogenesis. Nat Commun. 2015; 6(1): 8859.

[50]

ZouF-W, TangY-F, LiX, LiuC, WuC, ZhangL-Y. circ_SMA4 promotes gastrointestinal stromal tumors malignant progression by sponging miR-494-3p/KIT Axis and Activating JAK/STAT Pathway. Sci Rep. 2024; 14(1): 22004.

[51]

HallerF, Löbke C, RuschhauptM, et al. Increased KIT signalling with up-regulation of cyclin d correlates to accelerated proliferation and shorter disease-free survival in gastrointestinal stromal tumours (GISTs) with KIT exon 11 deletions. J Pathol. 2008; 216(2): 225-235.

[52]

WongNACS, YoungR, MalcomsonRDG, et al. Prognostic Indicators for Gastrointestinal Stromal Tumours: a Clinicopathological and Immunohistochemical Study of 108 Resected Cases of the Stomach. Histopathology. 2003; 43(2): 118-126.

[53]

IhleMA, HussS, JeskeW, et al. Expression of cell cycle regulators and frequency of TP53 mutations in high risk gastrointestinal stromal tumors prior to adjuvant imatinib treatment. PLoS One. 2018; 13(2): e0193048.

[54]

OuW-B, NiN, ZuoR, et al. Cyclin D1 is a mediator of gastrointestinal stromal tumor KIT-independence. Oncogene. 2019; 38(39): 6615-6629.

[55]

McGranahanN, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017; 168: 613-628.

[56]

PassaroA, Jänne PA, MokT, PetersS. Overcoming therapy resistance in EGFR-mutant lung cancer. Nature Cancer. 2021(4): 377-391.

[57]

ChiP, QinL-X, NguyenB, et al. Phase II trial of imatinib plus binimetinib in patients with treatment-naive advanced gastrointestinal stromal tumor. J Clin Oncol. 2022; 40(9): 997-1008.

[58]

GuptaA, SinghJ, García-ValverdeA, SerranoC, FlynnDL. Ripretinib and MEK inhibitors synergize to induce apoptosis in preclinical models of GIST and systemic mastocytosis. Mol Cancer Ther. 2021; 20(7): 1234-1245.

[59]

GuptaA, MaS, CheK, Pobbati AV. Inhibition of PI3K and MAPK pathways along with KIT inhibitors as a strategy to overcome drug resistance in gastrointestinal stromal tumors. PLoS One. 2021; 16(7): e0252689.

[60]

BauerS, Duensing A, DemetriGD, FletcherJA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: pI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007; 26(54): 7560-7568.

[61]

ZookP, PathakHB, BelinskyMG, et al. Combination of imatinib mesylate and AKT inhibitor provides synergistic effects in preclinical study of gastrointestinal stromal tumor. Clin Cancer Res. 2017; 23(1): 171-180.

[62]

KozinovaM, JoshiS, YeS, et al. Combined inhibition of AKT and KIT restores expression of programmed cell death 4 (PDCD4) in gastrointestinal stromal tumor. Cancers. 2021; 13(15): 3699.

[63]

MerchantM, MoffatJ, SchaeferG, et al. Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors. PLoS One. 2017; 12(10): e0185862.

[64]

CorcoranRB, EbiH, TurkeAB, et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012; 2(3): 227-235.

[65]

MaC, KangDi, GaoP, et al. Discovery of JAB-3312, a potent SHP2 allosteric inhibitor for cancer treatment. J Med Chem. 2024; 67(16): 13534-13549.

[66]

NicholsRJ, HaderkF, StahlhutC, et al. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1-and RAS-driven cancers. Nat Cell Biol. 2018; 20(9): 1064-1073.

[67]

YuanX, BuH, ZhouJ, Yang C-Y, ZhangH. Recent advances of SHP2 inhibitors in cancer therapy: current development and clinical application. J Med Chem. 2020; 63(20): 11368-11396.

[68]

Valencia-SamaI, Ladumor Y, KeeL, et al. NRAS status determines sensitivity to SHP2 inhibitor combination therapies targeting the RAS–MAPK pathway in neuroblastoma. Cancer Res. 2020; 80(16): 3413-3423.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/