Muscle-specific gene editing improves molecular and phenotypic defects in a mouse model of myotonic dystrophy type 1

Mariapaola Izzo , Jonathan Battistini , Elisabetta Golini , Christine Voellenkle , Claudia Provenzano , Tiziana Orsini , Georgios Strimpakos , Ferdinando Scavizzi , Marcello Raspa , Denisa Baci , Svetlana Frolova , Spyros Tastsoglou , Germana Zaccagnini , Jose Manuel Garcia-Manteiga , Genevieve Gourdon , Silvia Mandillo , Beatrice Cardinali , Fabio Martelli , Germana Falcone

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70227

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70227 DOI: 10.1002/ctm2.70227
RESEARCH ARTICLE

Muscle-specific gene editing improves molecular and phenotypic defects in a mouse model of myotonic dystrophy type 1

Author information +
History +
PDF

Abstract

•In vivo application of a therapeutic gene editing strategy for permanent deletion of the pathogenetic CTG-repeat amplification in the DMPK gene that causes myotonic dystrophy type 1.

•Following treatment, diseased mice show a significant improvement of both molecular and phenotypic defects.

Keywords

CRISPR/Cas9 / CTG repeats / DM1 / DMPK / DMSXL mouse model / gene editing / muscle / MyoAAV / myotonic dystrophy type 1

Cite this article

Download citation ▾
Mariapaola Izzo, Jonathan Battistini, Elisabetta Golini, Christine Voellenkle, Claudia Provenzano, Tiziana Orsini, Georgios Strimpakos, Ferdinando Scavizzi, Marcello Raspa, Denisa Baci, Svetlana Frolova, Spyros Tastsoglou, Germana Zaccagnini, Jose Manuel Garcia-Manteiga, Genevieve Gourdon, Silvia Mandillo, Beatrice Cardinali, Fabio Martelli, Germana Falcone. Muscle-specific gene editing improves molecular and phenotypic defects in a mouse model of myotonic dystrophy type 1. Clinical and Translational Medicine, 2025, 15(2): e70227 DOI:10.1002/ctm2.70227

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MeolaG, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta. 2015; 1852(4): 594-606.

[2]

UddB, KraheR. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol. 2012; 11(10): 891-905.

[3]

De Serres-BérardT, PierreM, Chahine M, PuymiratJ. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis. 2021; 160: 105532.

[4]

GourdonG, MeolaG. Myotonic dystrophies: state of the art of new therapeutic developments for the CNS. Front Cell Neurosci. 2017; 11: 101.

[5]

PericS, Bozovic I, NisicT, et al. Body composition analysis in patients with myotonic dystrophy types 1 and 2. Neurol Sci. 2019; 40(5): 1035-1040.

[6]

SedehizadehS, BrookJD, MaddisonP. Body composition and clinical outcome measures in patients with myotonic dystrophy type 1. Neuromuscul Disord. 2017; 27(3): 286-289.

[7]

BrookJD, McCurrach ME, HarleyHG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992; 69(2): 385. doi:10.1016/0092-8674(92)90418-c

[8]

MahadevanM, Tsilfidis C, SabourinL, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science. 1992; 255(5049): 1253-1255.

[9]

BirdTD. Myotonic dystrophy type 1. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, eds. GeneReviews®. Last revision November, 2024. University of Washington, Seattle; 1993. http://www.ncbi.nlm.nih.gov/books/NBK1165/

[10]

MeolaG. Myotonic dystrophy type 2: the 2020 update. Acta Myologica. 2020; 39(4): 222. doi:10.36185/2532-1900-026

[11]

AndreLM, AusemsCRM, WansinkDG, Wieringa B. Abnormalities in skeletal muscle myogenesis, growth, and regeneration in myotonic dystrophy. Front Neurol. 2018; 9: 368.

[12]

ViscontiVV, Centofanti F, FittipaldiS, MacrìE, Novelli G, BottaA. Epigenetics of myotonic dystrophies: a minireview. Int J Mol Sci. 2021; 22(22): 12594.

[13]

López-MartínezA, Soblechero-MartínP, de-la-Puente-OvejeroL, Nogales-Gadea G, Arechavala-GomezaV. An overview of alternative splicing defects implicated in myotonic dystrophy type I. Genes (Basel). 2020; 11(9): 1109.

[14]

PerbelliniR, GrecoS, Sarra-FerrarisG, et al. Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscul Disord. 2011; 21(2): 81-88.

[15]

ThomasJD, Oliveira R, SznajderŁJ, SwansonMS. Myotonic dystrophy and developmental regulation of RNA processing. Compr Physiol. 2018; 8(2): 509-553.

[16]

ZuT, Gibbens B, DotyNS, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA. 2011; 108(1): 260-265.

[17]

VoellenkleC, Perfetti A, CarraraM, et al. Dysregulation of circular RNAs in myotonic dystrophy type 1. Int J Mol Sci. 2019; 20(8): 1938.

[18]

SteinbachP, Gläser D, VogelW, WolfM, Schwemmle S. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am J Hum Genet. 1998; 62(2): 278-285.

[19]

López CastelA, Nakamori M, ToméS, et al. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet. 2011; 20(1): 1-15.

[20]

BrouwerJR, HuguetA, NicoleA, Munnich A, GourdonG. Transcriptionally repressive chromatin remodelling and CpG methylation in the presence of expanded CTG-repeats at the DM1 locus. J Nucleic Acids. 2013; 2013: 567435.

[21]

Yanovsky-DaganS, BnayaE, DiabMA, et al. Deletion of the CTG expansion in myotonic dystrophy type 1 reverses <em>DMPK</em>aberrant methylation in human embryonic stem cells but not affected myoblasts. bioRxiv. Published online 2019:631457.

[22]

LégaréC, Overend G, GuaySP, et al. DMPK gene DNA methylation levels are associated with muscular and respiratory profiles in DM1. Neurol Genet. 2019; 5(3): e338.

[23]

ThorntonCA, WymerJP, SimmonsZ, McClain C, MoxleyRT. Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nat Genet. 1997; 16(4): 407-409.

[24]

KlesertTR, OttenAD, BirdTD, Tapscott SJ. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat Genet. 1997; 16(4): 402-406.

[25]

IzzoM, Battistini J, ProvenzanoC, MartelliF, Cardinali B, FalconeG. Molecular therapies for myotonic dystrophy type 1: from small drugs to gene editing. Int J Mol Sci. 2022; 23(9): 4622.

[26]

ArandelL, Polay Espinoza M, MatlokaM, et al. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech. 2017; 10(4): 487-497. doi:10.1242/dmm.027367

[27]

PanticB, BorgiaD, GiuncoS, et al. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts. Exp Cell Res. 2016; 342(1): 39-51.

[28]

ProvenzanoC, Cappella M, ValapertaR, et al. CRISPR/Cas9-mediated deletion of CTG expansions recovers normal phenotype in myogenic cells derived from myotonic dystrophy 1 patients. Mol Ther Nucleic Acids. 2017; 9: 337-348.

[29]

PhilipsAV, Timchenko LT, CooperTA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science. 1998; 280(5364): 737-741.

[30]

WarfMB, Berglund JA. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA. 2007; 13(12): 2238-2251.

[31]

BrazSO, Acquaire J, GourdonG, Gomes-PereiraM. Advances in the understanding of neuromuscular aspects of myotonic dystrophy. Front Neurol. 2018; 9: 519.

[32]

HuguetA, MedjaF, NicoleA, et al. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1, 000 CTG repeats from the human DM1 locus. PLoS Genet. 2012; 8(11): e1003043.

[33]

Ait BenichouS, JauvinD, De Serres-BérardT, et al. Antisense oligonucleotides as a potential treatment for brain deficits observed in myotonic dystrophy type 1. Gene Ther. 2022; 29(12): 698-709.

[34]

WangM, WengWC, StockL, et al. Correction of glycogen synthase kinase 3β in myotonic dystrophy 1 reduces the mutant RNA and improves postnatal survival of DMSXL mice. Mol Cell Biol. 2019; 39(21):e00155-19.

[35]

Lo ScrudatoM, Poulard K, SourdC, et al. Genome editing of expanded CTG repeats within the human DMPK gene reduces nuclear RNA foci in the muscle of DM1 mice. Mol Ther. 2019; 27(8): 1372-1388.

[36]

CardinaliB, Provenzano C, IzzoM, et al. Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat expansion in the DMPK gene. Mol Ther Nucleic Acids. 2022; 27: 184-199.

[37]

Hernandez-HernandezO, Guiraud-Dogan C, SicotG, et al. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain. 2013; 136(Pt 3): 957-970.

[38]

AlgalarrondoV, WahbiK, SebagF, et al. Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1. Neuromuscul Disord. 2015; 25(4): 308-320.

[39]

PanaitePA, Kuntzer T, GourdonG, LobrinusJA, Barakat-Walter I. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy. Dis Model Mech. 2013; 6(3): 622-631. doi:10.1242/dmm.010512

[40]

SicotG, Servais L, DincaDM, et al. Downregulation of the glial GLT1 glutamate transporter and purkinje cell dysfunction in a mouse model of myotonic dystrophy. Cell Rep. 2017; 19(13): 2718-2729.

[41]

GoliniE, Rigamonti M, RaspaM, et al. Excessive rest time during active phase is reliably detected in a mouse model of myotonic dystrophy type 1 using home cage monitoring. Front Behav Neurosci. 2023; 17: 1130055.

[42]

WiedenheftB, Sternberg SH, DoudnaJA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012; 482(7385): 331-338.

[43]

JinekM, Chylinski K, FonfaraI, HauerM, DoudnaJA, CharpentierE. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816-821.

[44]

O’ConnellMR, Oakes BL, SternbergSH, East-SeletskyA, KaplanM, DoudnaJA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. 2014; 516(7530): 263-266.

[45]

PintoBS, SaxenaT, OliveiraR, et al. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol Cell. 2017; 68(3): 479-490 e5.

[46]

PorquetF, Weidong L, JehasseK, et al. Specific DMPK-promoter targeting by CRISPRi reverses myotonic dystrophy type 1-associated defects in patient muscle cells. Mol Ther Nucleic Acids. 2023; 32: 857-871.

[47]

BatraR, NellesDA, RothDM, et al. The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat Biomed Eng. 2021; 5(2): 157-168.

[48]

WangY, HaoL, WangH, et al. Therapeutic genome editing for myotonic dystrophy type 1 using CRISPR/Cas9. Mol Ther. 2018; 26(11): 2617-2630.

[49]

DastidarS, Majumdar D, TipaneeJ, et al. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther. 2022; 30(1): 75-91.

[50]

AlwazzanM, NewmanE, HamshereMG, Brook JD. Myotonic dystrophy is associated with a reduced level of RNA from the DMWD allele adjacent to the expanded repeat. Hum Mol Genet. 1999; 8(8): 1491-1497.

[51]

van AgtmaalEL, AndreLM, WillemseM, et al. CRISPR/Cas9-induced (CTGCAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing. Mol Ther. 2017; 25(1): 24-43.

[52]

DastidarS, ArduiS, SinghK, et al. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res. 2018; 46(16): 8275-8298.

[53]

CullotG, BoutinJ, ToutainJ, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun. 2019; 10(1): 1136.

[54]

IkedaM, Taniguchi-Ikeda M, KatoT, et al. Unexpected mutations by CRISPR-Cas9 CTG repeat excision in myotonic dystrophy and use of CRISPR interference as an alternative approach. Mol Ther Methods Clin Dev. 2020; 18: 131-144.

[55]

KosickiM, Tomberg K, BradleyA. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018; 36(8): 765-771.

[56]

MosbachV, Viterbo D, Descorps-DeclereS, PoggiL, Vaysse-Zinkhofer W, RichardGF. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions. PLoS Genet. 2020; 16(7): e1008924.

[57]

TabebordbarM, Lagerborg KA, StantonA, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021; 184(19): 4919-4938. e22.

[58]

WeinmannJ, WeisS, SippelJ, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun. 2020; 11(1): 5432.

[59]

McCartyDM. Self-complementary AAV vectors; advances and applications. Mol Ther. 2008; 16(10): 1648-1656.

[60]

DavisBM, McCurrach ME, TanejaKL, SingerRH, Housman DE. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci USA. 1997; 94(14): 7388-7393.

[61]

CardinaliB, Cappella M, ProvenzanoC, et al. MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells. Cell Death Dis. 2016; 7: e2086.

[62]

AnthonC, CorsiGI, GorodkinJ. CRISPRon/off: CRISPR/Cas9 on-and off-target gRNA design. Bioinformatics. 2022; 38(24): 5437-5439.

[63]

AlkanF, WenzelA, AnthonC, Havgaard JH, GorodkinJ. CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biol. 2018; 19(1): 177.

[64]

CradickTJ, QiuP, LeeCM, Fine EJ, BaoG. COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol Ther Nucleic Acids. 2014; 3: e214.

[65]

AbadiS, YanWX, AmarD, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017; 13(10): e1005807.

[66]

BaeS, ParkJ, KimJS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014; 30(10): 1473-1475.

[67]

LabunK, Montague TG, KrauseM, Torres CleurenYN, Tjeldnes H, ValenE. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019; 47(W1): W171-W174.

[68]

LiH. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997v2 [q-bioGN]. Published online 2013.

[69]

GarrisonE, MarthG. Haplotype-based variant detection from short-read sequencing. arXiv:12073907v2 [q-bioGN]. Published online 2012.

[70]

McKennaA, HannaM, BanksE, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9): 1297-1303.

[71]

GilpatrickT, LeeI, GrahamJE, et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat Biotechnol. 2020; 38(4): 433-438.

[72]

SeznecH, Lia-Baldini AS, DurosC, et al. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum Mol Genet. 2000; 9(8): 1185-1194.

[73]

González-BarrigaA, LallemantL, Dincã DM, et al. Integrative cell type-specific multi-omics approaches reveal impaired programs of glial cell differentiation in mouse culture models of DM1. Front Cell Neurosci. 2021; 15: 662035.

[74]

CardaniR, Mancinelli E, SansoneV, RotondoG, MeolaG. Biomolecular identification of (CCTG)n mutation in myotonic dystrophy type 2 (DM2) by FISH on muscle biopsy. Eur J Histochem. 2004; 48(4): 437-442.

[75]

JenquinJR, O’Brien AP, PoukalovK, et al. Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule screening. iScience. 2022; 25(5): 104198.

[76]

MandilloS, TucciV, HölterSM, et al. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics. 2008; 34(3): 243-255.

[77]

GoliniE, Rigamonti M, IannelloF, et al. A non-invasive digital biomarker for the detection of rest disturbances in the SOD1G93A mouse model of ALS. Front Neurosci. 2020; 14: 896.

[78]

KuznetsovaA, Brockhoff PB, ChristensenRHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017; 82: 1-26.

[79]

PrunaL, Chatelin J, Pascal-VigneronV, KaminskyP. Regional body composition and functional impairment in patients with myotonic dystrophy. Muscle Nerve. 2011; 44(4): 503-508.

[80]

NieuwenhuisS, Okkersen K, WidomskaJ, et al. Insulin signaling as a key moderator in myotonic dystrophy type 1. Front Neurol. 2019; 10: 1229.

[81]

VujnicM, PericS, PopovicS, et al. Metabolic syndrome in patients with myotonic dystrophy type 1. Muscle Nerve. 2015; 52(2): 273-277.

[82]

TerraccianoC, Rastelli E, MorelloM, et al. Vitamin D deficiency in myotonic dystrophy type 1. J Neurol. 2013; 260(9): 2330-2334.

[83]

RichardGF, Viterbo D, KhannaV, MosbachV, Castelain L, DujonB. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS One. 2014; 9(4): e95611.

[84]

MittelmanD, MoyeC, MortonJ, et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci USA. 2009; 106(24): 9607-9612.

[85]

CinesiC, Aeschbach L, YangB, DionV. Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase. Nat Commun. 2016; 7: 13272.

[86]

BatraR, NellesDA, PirieE, et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell. 2017; 170(5): 899-912 e10.

[87]

LiuY, ChenZ, HeA, et al. Targeting cellular mRNAs translation by CRISPR-Cas9. Sci Rep. 2016; 6: 29652.

[88]

WangF, WangL, ZouX, et al. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv. 2019; 37(5): 708-729.

[89]

HandalT, JusterS, Abu DiabM, et al. Differentiation shifts from a reversible to an irreversible heterochromatin state at the DM1 locus. Nat Commun. 2024; 15(1): 3270.

[90]

LopesR, PrasadMK. Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Front Bioeng Biotechnol. 2023; 11: 1339189.

[91]

IyerV, Boroviak K, ThomasM, et al. No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet. 2018; 14(7): e1007503.

[92]

ZuT, ClearyJD, LiuY, et al. RAN translation regulated by muscleblind proteins in myotonic dystrophy type 2. Neuron. 2017; 95(6): 1292-1305. e5.

[93]

StevanovskiI, Chintalaphani SR, GamaarachchiH, et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv. 2022; 8(9): eabm5386.

[94]

MiyatakeS, Koshimizu E, FujitaA, et al. Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom Med. 2022; 7(1): 62.

[95]

SledzinskiP, Dabrowska M, NowaczykM, OlejniczakM. Paving the way towards precise and safe CRISPR genome editing. Biotechnol Adv. 2021; 49: 107737.

[96]

ChakrabartiAM, Henser-Brownhill T, MonserratJ, PoetschAR, Luscombe NM, ScaffidiP. Target-specific precision of CRISPR-mediated genome editing. Mol Cell. 2019; 73(4): 699-713. e6.

[97]

BrinkmanEK, ChenT, de HaasM, Holland HA, AkhtarW, van SteenselB. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Mol Cell. 2018; 70(5): 801-813. e6.

[98]

PacesaM, PeleaO, JinekM. Past, present, and future of CRISPR genome editing technologies. Cell. 2024; 187(5): 1076-1100.

[99]

ParkSH, CaoM, PanY, et al. Comprehensive analysis and accurate quantification of unintended large gene modifications induced by CRISPR-Cas9 gene editing. Sci Adv. 2022; 8(42): eabo7676.

[100]

BoutinJ, Cappellen D, RosierJ, et al. ON-target adverse events of CRISPR-Cas9 nuclease: more chaotic than expected. CRISPR J. 2022; 5(1): 19-30.

[101]

SchepR, Brinkman EK, LeemansC, et al. Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance. Mol Cell. 2021; 81(10): 2216-2230. e10.

[102]

OttenAD, Tapscott SJ. Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc Natl Acad Sci USA. 1995; 92(12): 5465-5469.

[103]

FrischR, Singleton KR, MosesPA, et al. Effect of triplet repeat expansion on chromatin structure and expression of DMPK and neighboring genes, SIX5 and DMWD, in myotonic dystrophy. Mol Genet Metab. 2001; 74(1-2): 281-291.

[104]

XueC, GreeneEC. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. 2021; 37(7): 639-656.

[105]

HuC, KastenJ, ParkH, et al. Myocyte-mediated arginase expression controls hyperargininemia but not hyperammonemia in arginase-deficient mice. Mol Ther. 2014; 22(10): 1792.

[106]

BengtssonNE, HallJK, OdomGL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017; 8: 14454.

[107]

HuntJMT, SamsonCA, RandAD, Sheppard HM. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum Genet. 2023; 142(6): 705-720.

[108]

TongH, HuangJ, XiaoQ, et al. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat Biotechnol. 2023; 41(1): 108-119.

[109]

SkeensE, SinhaS, AhsanM, et al. High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9. Sci Adv. 2024; 10(10): eadl1045.

[110]

PoukalovKK, ValeroMC, MuscatoDR, et al. Myospreader improves gene editing in skeletal muscle by myonuclear propagation. Proc Natl Acad Sci USA. 2024; 121(19): e2321438121.

[111]

HuLF, LiYX, WangJZ, Zhao YT, WangY. Controlling CRISPR-Cas9 by guide RNA engineering. Wiley Interdiscip Rev RNA. 2023; 14(1): e1731. doi:10.1002/wrna.1731

[112]

KazemianP, YuSY, ThomsonSB, Birkenshaw A, LeavittBR, RossCJD. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol Pharm. 2022; 19(6): 1669-1686.

[113]

KevadiyaBD, IslamF, DeolP, et al. Delivery of gene editing therapeutics. Nanomedicine. 2023; 54: 102711.

[114]

ChenK, StahlEC, KangMH, et al. Engineering self-deliverable ribonucleoproteins for genome editing in the brain. Nat Commun. 2024; 15(1): 1727.

[115]

KenjoE, HozumiH, MakitaY, et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun. 2021; 12(1): 7101.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/