Cell-free epigenomes enhanced fragmentomics-based model for early detection of lung cancer

Yadong Wang , Qiang Guo , Zhicheng Huang , Liyang Song , Fei Zhao , Tiantian Gu , Zhe Feng , Haibo Wang , Bowen Li , Daoyun Wang , Bin Zhou , Chao Guo , Yuan Xu , Yang Song , Zhibo Zheng , Zhongxing Bing , Haochen Li , Xiaoqing Yu , Ka Luk Fung , Heqing Xu , Jianhong Shi , Meng Chen , Shuai Hong , Haoxuan Jin , Shiyuan Tong , Sibo Zhu , Chen Zhu , Jinlei Song , Jing Liu , Shanqing Li , Hefei Li , Xueguang Sun , Naixin Liang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70225

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70225 DOI: 10.1002/ctm2.70225
RESEARCH ARTICLE

Cell-free epigenomes enhanced fragmentomics-based model for early detection of lung cancer

Author information +
History +
PDF

Abstract

•Our study elucidated the regulatory relationships between epigenetic modifications and their effects on fragmentomic features.

•Identifying epigenetically regulated genes provided a critical foundation for developing the cfDNA fragmentomics-based machine learning model.

•The model demonstrated exceptional clinical performance, highlighting its substantial potential for translational application in clinical practice.

Keywords

cell-free DNA / early cancer screening / epigenomics / liquid biopsy / lung cancer

Cite this article

Download citation ▾
Yadong Wang, Qiang Guo, Zhicheng Huang, Liyang Song, Fei Zhao, Tiantian Gu, Zhe Feng, Haibo Wang, Bowen Li, Daoyun Wang, Bin Zhou, Chao Guo, Yuan Xu, Yang Song, Zhibo Zheng, Zhongxing Bing, Haochen Li, Xiaoqing Yu, Ka Luk Fung, Heqing Xu, Jianhong Shi, Meng Chen, Shuai Hong, Haoxuan Jin, Shiyuan Tong, Sibo Zhu, Chen Zhu, Jinlei Song, Jing Liu, Shanqing Li, Hefei Li, Xueguang Sun, Naixin Liang. Cell-free epigenomes enhanced fragmentomics-based model for early detection of lung cancer. Clinical and Translational Medicine, 2025, 15(2): e70225 DOI:10.1002/ctm2.70225

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrayF, Laversanne M, SungH, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-263.

[2]

GoldstrawP, Chansky K, CrowleyJ, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016; 11(1): 39-51.

[3]

AberleDR, AdamsAM, BergCD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011; 365(5): 395-409.

[4]

ChenK, HeY, WangW, et al. Development of new techniques and clinical applications of liquid biopsy in lung cancer management. Sci Bull (Beijing). 2024; 69(10): 1556-1568.

[5]

StejskalP, Goodarzi H, SrovnalJ, et al. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Mol Cancer. 2023; 22(1): 15.

[6]

ZhangK, FuR, LiuR, et al. Circulating cell-free DNA-based multi-cancer early detection. Trends Cancer. 2024; 10(2): 161-174.

[7]

SnyderMW, Kircher M, HillAJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016; 164(1-2): 57-68.

[8]

SunK, JiangP, ChengSH, et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin. Genome Res. 2019; 29(3): 418-427.

[9]

SerpasL, ChanRWY, JiangP, et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc Natl Acad Sci USA. 2019; 116(2): 641-649.

[10]

JiangP, SunK, PengW, et al. Plasma DNA end-motif profiling as a fragmentomic marker in cancer, pregnancy, and transplantation. Cancer Discov. 2020; 10(5): 664-673.

[11]

ZhuD, WangH, WuW, et al. Circulating cell-free DNA fragmentation is a stepwise and conserved process linked to apoptosis. BMC Biol. 2023; 21(1): 253.

[12]

MathiosD, Johansen JS, CristianoS, et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat Commun. 2021; 12(1): 5060.

[13]

KimJ, HongSP, LeeS, et al. Multidimensional fragmentomic profiling of cell-free DNA released from patient-derived organoids. Hum Genomics. 2023; 17(1): 96.

[14]

YotsukuraM, Asamura H, MotoiN, et al. Long-term prognosis of patients with resected adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung. J Thorac Oncol. 2021; 16(8): 1312-1320.

[15]

EsfahaniMS, Hamilton EG, MehrmohamadiM, et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nat Biotechnol. 2022; 40(4): 585-597.

[16]

StanleyKE, Jatsenko T, TuveriS, et al. Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology. Nat Commun. 2024; 15(1): 2220.

[17]

MaanssonCT, Thomsen LS, MeldgaardP, et al. Integration of cell-free DNA end motifs and fragment lengths can identify active genes in liquid biopsies. Int J Mol Sci. 2024; 25(2): 1243.

[18]

LiangW, ZhaoY, HuangW, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics. 2019; 9(7): 2056-2070.

[19]

LiuMC, OxnardGR, KleinEA, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020; 31(6): 745-759.

[20]

SadehR, Sharkia I, FialkoffG, et al. ChIP-seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. Nat Biotechnol. 2021; 39(5): 586-598.

[21]

BacaSC, SeoJH, DavidsohnMP, et al. Liquid biopsy epigenomic profiling for cancer subtyping. Nat Med. 2023; 29(11): 2737-2741.

[22]

ZhuG, GuoYA, HoD, et al. Tissue-specific cell-free DNA degradation quantifies circulating tumor DNA burden. Nat Commun. 2021; 12(1): 2229.

[23]

ParrenoV, Loubiere V, SchuettengruberB, et al. Transient loss of polycomb components induces an epigenetic cancer fate. Nature. 2024; 629(8012): 688-696.

[24]

FialkoffG, Takahashi N, SharkiaI, et al. Subtyping of small cell lung cancer using plasma cell-free nucleosomes. bioRxiv. 2022. 2022.2006.2024.497386.

[25]

Trier MaanssonC, Meldgaard P, StougaardM, et al. Cell-free chromatin immunoprecipitation can determine tumor gene expression in lung cancer patients. Mol Oncol. 2023; 17(5): 722-736.

[26]

BrouwerI, Kerklingh E, van LeeuwenF, et al. Dynamic epistasis analysis reveals how chromatin remodeling regulates transcriptional bursting. Nat Struct Mol Biol. 2023; 30(5): 692-702.

[27]

TolstorukovMY, SansamCG, LuP, et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc Natl Acad Sci USA. 2013; 110(25): 10165-10170.

[28]

ChenL, Abou-Alfa GK, ZhengB, et al. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients. Cell Res. 2021; 31(5): 589-592.

[29]

PhamTMQ, PhanTH, JasmineTX, et al. Multimodal analysis of genome-wide methylation, copy number aberrations, and end motif signatures enhances detection of early-stage breast cancer. Front Oncol. 2023; 13: 1127086.

[30]

KakinumaR, Noguchi M, AshizawaK, et al. Natural history of pulmonary subsolid nodules: a prospective multicenter study. J Thorac Oncol. 2016; 11(7): 1012-1028.

[31]

StackpoleML, ZengW, LiS, et al. Cost-effective methylome sequencing of cell-free DNA for accurately detecting and locating cancer. Nat Commun. 2022; 13(1): 5566.

[32]

ZhouZ, MaML, ChanRWY, et al. Fragmentation landscape of cell-free DNA revealed by deconvolutional analysis of end motifs. Proc Natl Acad Sci USA. 2023; 120(17): e2220982120.

[33]

WuT, HuE, XuS, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021; 2(3): 100141.

[34]

GuoS, XuZ, DongX, et al. GPSAdb: a comprehensive web resource for interactive exploration of genetic perturbation RNA-seq datasets. Nucleic Acids Res. 2023; 51(D1): D964-d968.

[35]

HubbellE, ClarkeCA, AravanisAM, et al. Modeled reductions in late-stage cancer with a multi-cancer early detection test. Cancer Epidemiol Biomarkers Prev. 2021; 30(3): 460-468.

[36]

HanB, ZhengR, ZengH, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent. 2024; 4(1): 47-53.

[37]

ZengH, RanX, AnL, et al. Disparities in stage at diagnosis for five common cancers in China: a multicentre, hospital-based, observational study. Lancet Public Health. 2021; 6(12): e877-e887.

[38]

HeS, LiH, CaoM, et al. Survival of 7, 311 lung cancer patients by pathological stage and histological classification: a multicenter hospital-based study in China. Transl Lung Cancer Res. 2022; 11(8): 1591-1605.

[39]

LoYMD, HanDSC, JiangP, et al. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021; 372(6538).

[40]

MaluchenkoNV, NilovDK, PushkarevSV, et al. Mechanisms of nucleosome reorganization by PARP1. Int J Mol Sci. 2021; 22(22).

[41]

BradnerJE, HniszD, YoungRA. Transcriptional addiction in cancer. Cell. 2017; 168(4): 629-643.

[42]

CarterB, ZhaoK. The epigenetic basis of cellular heterogeneity. Nat Rev Genet. 2021; 22(4): 235-250.

[43]

HanDSC, NiM, ChanRWY, et al. The biology of cell-free DNA fragmentation and the roles of DNASE1, DNASE1L3, and DFFB. Am J Hum Genet. 2020; 106(2): 202-214.

[44]

TianXY, LiJ, LiuTH, et al. The overexpression of AUF1 in colorectal cancer predicts a poor prognosis and promotes cancer progression by activating ERK and AKT pathways. Cancer Med. 2020; 9(22): 8612-8623.

[45]

ClaytonNS, RidleyAJ. Targeting Rho GTPase signaling networks in cancer. Front Cell Dev Biol. 2020; 8: 222.

[46]

WeeP, WangZ. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017; 9(5): 52.

[47]

FialaC, Diamandis EP. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med. 2018; 16(1): 166.

[48]

MarkusH, Chandrananda D, MooreE, et al. Refined characterization of circulating tumor DNA through biological feature integration. Sci Rep. 2022; 12(1): 1928.

[49]

SanchezC, RochB, MazardT, et al. Circulating nuclear DNA structural features, origins, and complete size profile revealed by fragmentomics. JCI Insight. 2021; 6(7): e144561.

[50]

CristianoS, LealA, PhallenJ, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019; 570(7761): 385-389.

[51]

OberhoferA, Bronkhorst AJ, UhligC, et al. Tracing the origin of cell-free DNA molecules through tissue-specific epigenetic signatures. Diagnostics (Basel). 2022; 12(8): 1834.

[52]

YangJ, XuJ, WangW, et al. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2023; 8(1): 210.

[53]

FuK, BonoraG, PellegriniM. Interactions between core histone marks and DNA methyltransferases predict DNA methylation patterns observed in human cells and tissues. Epigenetics. 2020; 15(3): 272-282.

[54]

GinnoPA, Gaidatzis D, FeldmannA, et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat Commun. 2020; 11(1): 2680.

[55]

HuX, Estecio MR, ChenR, et al. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat Commun. 2021; 12(1): 687.

[56]

ZhangY, FuF, ZhangQ, et al. Evolutionary proteogenomic landscape from pre-invasive to invasive lung adenocarcinoma. Cell Rep Med. 2024; 5(1): 101358.

[57]

DejimaH, HuX, ChenR, et al. Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features. Nat Commun. 2021; 12(1): 2722.

[58]

LaFaveLM, KarthaVK, MaS, et al. Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. Cancer Cell. 2020; 38(2): 212-228.e213.

[59]

HagaY, Sakamoto Y, KajiyaK, et al. Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma. Nat Commun. 2023; 14(1): 8375.

[60]

TanT, ShiP, AbbasMN, et al. Epigenetic modification regulates tumor progression and metastasis through EMT (Review). Int J Oncol. 2022; 60(6): 70.

[61]

ChabonJJ, Hamilton EG, KurtzDM, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020; 580(7802): 245-251.

[62]

LiangN, LiB, JiaZ, et al. Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning. Nat Biomed Eng. 2021; 5(6): 586-599.

[63]

MazzonePJ, BachPB, CareyJ, et al. Clinical validation of a cell-free DNA fragmentome assay for augmentation of lung cancer early detection. Cancer Discov. 2024; 14(11): 2224-2242.

[64]

LiY, JiangG, WuW, et al. Multi-omics integrated circulating cell-free DNA genomic signatures enhanced the diagnostic performance of early-stage lung cancer and postoperative minimal residual disease. EBioMedicine. 2023; 91: 104553.

[65]

ChenK, SunJ, ZhaoH, et al. Non-invasive lung cancer diagnosis and prognosis based on multi-analyte liquid biopsy. Mol Cancer. 2021; 20(1): 23.

[66]

SajiH, OkadaM, TsuboiM, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet. 2022; 399(10335): 1607-1617.

[67]

AltorkiN, WangX, KozonoD, et al. Lobar or sublobar resection for peripheral stage IA non-small-cell lung cancer. N Engl J Med. 2023; 388(6): 489-498.

[68]

WangQ, SongX, ZhaoF, et al. Noninvasive diagnosis of pulmonary nodules using a circulating tsRNA-based nomogram. Cancer Sci. 2023; 114(12): 4607-4621.

[69]

HeJ, WangB, TaoJ, et al. Accurate classification of pulmonary nodules by a combined model of clinical, imaging, and cell-free DNA methylation biomarkers: a model development and external validation study. Lancet Digit Health. 2023; 5(10): e647-e656.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/