RNF31 induces paclitaxel resistance by sustaining ALYREF cytoplasmic–nuclear shuttling in human triple-negative breast cancer

Shumei Huang , Dongni Shi , Shuqin Dai , Xingyu Jiang , Rui Wang , Muwen Yang , Boyu Chen , Xuwei Chen , Lingzhi Kong , Lixin He , Pinwei Deng , Xiangfu Chen , Chuyong Lin , Yue Li , Jun Li , Libing Song , Yawei Shi , Weidong Wei

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70203

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70203 DOI: 10.1002/ctm2.70203
RESEARCH ARTICLE

RNF31 induces paclitaxel resistance by sustaining ALYREF cytoplasmic–nuclear shuttling in human triple-negative breast cancer

Author information +
History +
PDF

Abstract

•RNF31 facilitated ALYREF-mediated PTX resistance in TNBC.

•RNF31 promoted ALYREF nuclear transport via IPO13 in response to PTX treatment, subsequently enhancing the export of mRNAs encoding PTX resistance-related factors, including TUBB3, STMN1, and TAU.

•Blocking RNF31 trapped ALYREF in the cytoplasm and induced TNBC cell death upon PTX treatment.

•Inhibiting RNF31 activity re-sensitized PTX-resistant TNBC to PTX treatment.

Keywords

ALYREF / cytoplasmic–nuclear shuttling / paclitaxel resistance / triple-negative breast cancer

Cite this article

Download citation ▾
Shumei Huang, Dongni Shi, Shuqin Dai, Xingyu Jiang, Rui Wang, Muwen Yang, Boyu Chen, Xuwei Chen, Lingzhi Kong, Lixin He, Pinwei Deng, Xiangfu Chen, Chuyong Lin, Yue Li, Jun Li, Libing Song, Yawei Shi, Weidong Wei. RNF31 induces paclitaxel resistance by sustaining ALYREF cytoplasmic–nuclear shuttling in human triple-negative breast cancer. Clinical and Translational Medicine, 2025, 15(2): e70203 DOI:10.1002/ctm2.70203

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GiaquintoAN, SungH, MillerKD, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022; 72: 524-541.

[2]

BianchiniG, De Angelis C, LicataL, GianniL. Treatment landscape of triple-negative breast cancer—expanded options, evolving needs. Nat Rev Clin Oncol. 2022; 19: 91-113.

[3]

GeyerCE, SikovWM, HuoberJ, et al. Long-term efficacy and safety of addition of carboplatin with or without veliparib to standard neoadjuvant chemotherapy in triple-negative breast cancer: 4-year follow-up data from BrighTNess, a randomized phase III trial. Ann Oncol. 2022; 33: 384-394.

[4]

YuKD, YeFG, HeM, et al. Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer: a phase 3 randomized clinical trial. JAMA Oncol. 2020; 6: 1390-1396.

[5]

LoiblS, Schneeweiss A, HuoberJ, et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response. Ann Oncol. 2022; 33: 1149-1158.

[6]

SchmidP, CortesJ, DentR, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N Engl J Med. 2022; 386: 556-567.

[7]

ZagamiP, CareyLA. Triple negative breast cancer: pitfalls and progress. NPJ Breast Cancer. 2022; 8: 95.

[8]

MoscaL, IlariA, FaziF, Assaraf YG, ColottiG. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updat. 2021; 54: 100742.

[9]

LiuR, LiangX, GuoH, et al. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal. 2023; 109: 110775.

[10]

GanPP, Pasquier E, KavallarisM. Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res. 2007; 67: 9356-9363.

[11]

LinH, ZhengL, LiS, et al. Cytotoxicity of Tanshinone IIA combined with Taxol on drug-resist breast cancer cells MCF-7 through inhibition of Tau. Phytother Res. 2018; 32: 667-671.

[12]

LiaoL, ZhangYL, DengL, et al. Protein phosphatase 1 subunit PPP1R14B stabilizes STMN1 to promote progression and paclitaxel resistance in triple-negative breast cancer. Cancer Res. 2023; 83: 471-484.

[13]

WickramasingheVO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol. 2015; 16: 431-442.

[14]

MarulloR, Rutherford SC, RevueltaMV, et al. XPO1 enables adaptive regulation of mRNA export required for genotoxic stress tolerance in cancer cells. Cancer Res. 2024; 84: 101-117.

[15]

NewellS, van der Watt PJ, LeanerVD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life. 2024; 76: 4-25.

[16]

BaiX, NiJ, BeretovJ, et al. THOC2 and THOC5 regulate stemness and radioresistance in triple-negative breast cancer. Adv Sci (Weinh). 2021; 8: e2102658.

[17]

XuZ, LiX, LiH, et al. Suppression of DDX39B sensitizes ovarian cancer cells to DNA-damaging chemotherapeutic agents via destabilizing BRCA1 mRNA. Oncogene. 2020; 39: 7051-7062.

[18]

LiY, WangM, YangM, et al. Nicotine-induced ILF2 facilitates nuclear mRNA export of pluripotency factors to promote stemness and chemoresistance in human esophageal cancer. Cancer Res. 2021; 81: 3525-3538.

[19]

NagyZ, Seneviratne JA, KanikevichM, et al. An ALYREF-MYCN coactivator complex drives neuroblastoma tumorigenesis through effects on USP3 and MYCN stability. Nat Commun. 2021; 12: 1881.

[20]

KlecC, Knutsen E, SchwarzenbacherD, et al. ALYREF, a novel factor involved in breast carcinogenesis, acts through transcriptional and post-transcriptional mechanisms selectively regulating the short NEAT1 isoform. Cell Mol Life Sci. 2022; 79: 391.

[21]

XueC, GuX, ZhengQ, et al. ALYREF mediates RNA m(5)C modification to promote hepatocellular carcinoma progression. Signal Transduct Target Ther. 2023; 8: 130.

[22]

WangJZ, ZhuW, HanJ, et al. The role of the HIF-1alpha/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun (Lond). 2021; 41: 560-575.

[23]

MengQ, XieY, SunK, et al. ALYREF-JunD-SLC7A5 axis promotes pancreatic ductal adenocarcinoma progression through epitranscriptome-metabolism reprogramming and immune evasion. Cell Death Discov. 2024; 10: 97.

[24]

ZhouZ, LuoMJ, StraesserK, Katahira J, HurtE, ReedR. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature. 2000; 407: 401-405.

[25]

OkadaM, JangSW, YeK. Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci U S A. 2008; 105: 8649-8654.

[26]

YangX, YangY, SunBF, et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017; 27: 606-625.

[27]

De MagistrisP. The great escape: mRNA export through the nuclear pore complex. Int J Mol Sci. 2021; 22: 11767.

[28]

MackmullMT, KlausB, HeinzeI, et al. Landscape of nuclear transport receptor cargo specificity. Mol Syst Biol. 2017; 13: 962.

[29]

ChristopheD, Christophe-Hobertus C, PichonB. Nuclear targeting of proteins: how many different signals? Cell Signal. 2000; 12: 337-341.

[30]

ZenklusenD, Vinciguerra P, StrahmY, StutzF. The yeast hnRNP-Like proteins Yra1p and Yra2p participate in mRNA export through interaction with Mex67p. Mol Cell Biol. 2001; 21: 4219-4232.

[31]

KashyapAK, Schieltz D, YatesJ 3rd, KelloggDR. Biochemical and genetic characterization of Yra1p in budding yeast. Yeast. 2005; 22: 43-56.

[32]

KodihaM, ChuA, MatusiewiczN, StochajU. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ. 2004; 11: 862-874.

[33]

YangM, LiY, KongL, et al. Inhibition of DPAGT1 suppresses HER2 shedding and trastuzumab resistance in human breast cancer. J Clin Invest. 2023; 133: e164428.

[34]

ChakrabortyS, Karmakar S, BasuM, KalS, GhoshMK. The E3 ubiquitin ligase CHIP drives monoubiquitylation-mediated nuclear import of the tumor suppressor PTEN. J Cell Sci. 2023; 136: jcs260950.

[35]

HuangY, LiJ, DuW, et al. Nuclear translocation of the 4-pass transmembrane protein Tspan8. Cell Res. 2021; 31: 1218-1221.

[36]

KirisakoT, KameiK, MurataS, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006; 25: 4877-4887.

[37]

EmmerichCH, Ordureau A, StricksonS, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci U S A. 2013; 110: 15247-15252.

[38]

WangP, DaiX, JiangW, Li Y, WeiW. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol. 2020; 67: 131-144.

[39]

ZhangJ, TuH, ZhengZ, Zhao X, LinX. RNF31 promotes tumorigenesis via inhibiting RIPK1 kinase-dependent apoptosis. Oncogene. 2023; 42: 1585-1596.

[40]

ZhangZ, KongX, LigtenbergMA, et al. RNF31 inhibition sensitizes tumors to bystander killing by innate and adaptive immune cells. Cell Rep Med. 2022; 3: 100655.

[41]

YangH, XueM, SuP, et al. RNF31 represses cell progression and immune evasion via YAP/PD-L1 suppression in triple negative breast cancer. J Exp Clin Cancer Res. 2022; 41: 364.

[42]

SachsN, de Ligt J, KopperO, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018; 172: 373-386 e310.

[43]

Pacheco-FiallosB, Vorlander MK, Riabov-BassatD, et al. mRNA recognition and packaging by the human transcription-export complex. Nature. 2023; 616: 828-835.

[44]

LitiereS, IsaacG, De VriesEGE, et al. RECIST 1.1 for response evaluation apply not only to chemotherapy-treated patients but also to targeted cancer agents: a pooled database analysis. J Clin Oncol. 2019; 37: 1102-1110.

[45]

ZuoY, FengQ, JinL, et al. Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. Nat Commun. 2020; 11: 1146.

[46]

IzaurraldeE, KutayU, von KobbeC, Mattaj IW, GorlichD. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 1997; 16: 6535-6547.

[47]

AyanlajaAA, JiG, WangJ, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020; 18: 24.

[48]

YasudaY, Miyamoto Y, SaiwakiT, YonedaY. Mechanism of the stress-induced collapse of the Ran distribution. Exp Cell Res. 2006; 312: 512-520.

[49]

StochajU, Rassadi R, ChiuJ. Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p. FASEB J. 2000; 14: 2130-2132.

[50]

GajewskaKA, JansDA, WagstaffKM. The nuclear transporter importin 13 can regulate stress-induced cell death through the clusterin/KU70 axis. Cells. 2023; 12: 279.

[51]

GajewskaKA, Lescesen H, RamialisonM, WagstaffKM, JansDA. Nuclear transporter Importin-13 plays a key role in the oxidative stress transcriptional response. Nat Commun. 2021; 12: 5904.

[52]

YangY, GuoL, ChenL, Gong B, JiaD, SunQ. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther. 2023; 8: 425.

[53]

BischoffFR, Krebber H, SmirnovaE, DongW, Ponstingl H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J. 1995; 14: 705-715.

[54]

DattiloV, D’Antona L, TalaricoC, et al. SGK1 affects RAN/RANBP1/RANGAP1 via SP1 to play a critical role in pre-miRNA nuclear export: a new route of epigenomic regulation. Sci Rep. 2017; 7: 45361.

[55]

MasudaS, DasR, ChengH, Hurt E, DormanN, ReedR. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev. 2005; 19: 1512-1517.

[56]

FribourgS, BraunIC, IzaurraldeE, Conti E. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell. 2001; 8: 645-656.

[57]

FanJ, KuaiB, WuG, et al. Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J. 2017; 36: 2870-2886.

[58]

LuX, AnL, FanG, et al. EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Res. 2022; 32: 359-374.

[59]

ShiD, WuX, JianY, et al. USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer. Nat Commun. 2022; 13: 5644.

[60]

DurairajG, GargP, BhaumikSR. Nuclear export of mRNA and its regulation by ubiquitylation. RNA Biol. 2009; 6: 531-535.

[61]

MacKayC, Carroll E, IbrahimAFM, et al. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res. 2014; 74: 2246-2257.

[62]

ZhuJ, ZhaoC, Kharman-BizA, et al. The atypical ubiquitin ligase RNF31 stabilizes estrogen receptor alpha and modulates estrogen-stimulated breast cancer cell proliferation. Oncogene. 2014; 33: 4340-4351.

[63]

SakamotoH, Egashira S, SaitoN, et al. Gliotoxin suppresses NF-kappaB activation by selectively inhibiting linear ubiquitin chain assembly complex (LUBAC). ACS Chem Biol. 2015; 10: 675-681.

[64]

JimboK, Hattori A, KoideS, et al. Genetic deletion and pharmacologic inhibition of E3 ubiquitin ligase HOIP impairs the propagation of myeloid leukemia. Leukemia. 2023; 37: 122-133.

[65]

JoT, Nishikori M, KogureY, et al. LUBAC accelerates B-cell lymphomagenesis by conferring resistance to genotoxic stress on B cells. Blood. 2020; 136: 684-697.

[66]

KatsuyaK, OikawaD, IioK, et al. Small-molecule inhibitors of linear ubiquitin chain assembly complex (LUBAC), HOIPINs, suppress NF-kappaB signaling. Biochem Biophys Res Commun. 2019; 509: 700-706.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/