Role of the FOXM1/CMA/ER stress axis in regulating the progression of nonalcoholic steatohepatitis

Shuoyi Ma , Erzhuo Xia , Miao Zhang , Yinan Hu , Siyuan Tian , Xiaohong Zheng , Bo Li , Gang Ma , Rui Su , Keshuai Sun , Qingling Fan , Fangfang Yang , Guanya Guo , Changcun Guo , Yulong Shang , Xinmin Zhou , Xia Zhou , Jingbo Wang , Ying Han

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70202

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70202 DOI: 10.1002/ctm2.70202
RESEARCH ARTICLE

Role of the FOXM1/CMA/ER stress axis in regulating the progression of nonalcoholic steatohepatitis

Author information +
History +
PDF

Abstract

•Chaperone-mediated autophagy (CMA) deficiency in hepatocytes promotes hepatic inflammation and fibrosis in mice with nonalcoholic steatohepatitis (NASH) by inducing cholesterol accumulation and endoplasmic reticulum (ER) stress.

•Upregulated FOXM1 impairs CMA by suppressing the transcription of lysosome-associated membrane protein 2A (LAMP2A), a rate-limiting component of CMA.

•ER stress increases FOXM1 expression and cholesterol accumulation.

•FOXM1/CMA/ER stress axis forms a vicious circle and promotes the development of NASH.

Keywords

chaperone-mediated autophagy / cholesterol / endoplasmic reticulum stress / FOXM1 / nonalcoholic steatohepatitis

Cite this article

Download citation ▾
Shuoyi Ma, Erzhuo Xia, Miao Zhang, Yinan Hu, Siyuan Tian, Xiaohong Zheng, Bo Li, Gang Ma, Rui Su, Keshuai Sun, Qingling Fan, Fangfang Yang, Guanya Guo, Changcun Guo, Yulong Shang, Xinmin Zhou, Xia Zhou, Jingbo Wang, Ying Han. Role of the FOXM1/CMA/ER stress axis in regulating the progression of nonalcoholic steatohepatitis. Clinical and Translational Medicine, 2025, 15(2): e70202 DOI:10.1002/ctm2.70202

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YounossiZM, KoenigAB, AbdelatifD, Fazel Y, HenryL, WymerM. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016; 64: 73.

[2]

PowellEE, WongVW, RinellaM. Non-alcoholic fatty liver disease. Lancet. 2021; 397: 2212.

[3]

LoombaR, Friedman SL, ShulmanGI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021; 184: 2537.

[4]

KimJY, Garcia-Carbonell R, YamachikaS, et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell. 2018; 175: 133.

[5]

CohenJC, HortonJD, HobbsHH. Human fatty liver disease: old questions and new insights. Science. 2011; 332: 1519.

[6]

MinH-K, KapoorA, FuchsM, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012; 15: 665.

[7]

TomitaK, Teratani T, SuzukiT, et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology. 2014; 59: 154.

[8]

WangX, ZhengZe, CavigliaJM, et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2016; 24: 848.

[9]

JiangS-Y, YangX, YangZ, et al. Discovery of an insulin-induced gene binding compound that ameliorates nonalcoholic steatohepatitis by inhibiting sterol regulatory element-binding protein-mediated lipogenesis. Hepatology. 2022; 76: 1466.

[10]

WangX, CaiB, YangX, et al. Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis. Cell Metab. 2020; 31: 969.

[11]

QiaoL, HuJ, QiuX, et al. LAMP2A, LAMP2B and LAMP2C: similar structures, divergent roles. Autophagy. 2023; 19: 2837.

[12]

YangM, LuoS, ChenW, Zhao L, WangX. Chaperone-mediated autophagy: a potential target for metabolic diseases. Curr Med Chem. 2023; 30: 1887.

[13]

MaSY, SunKS, ZhangM, et al. Disruption of Plin5 degradation by CMA causes lipid homeostasis imbalance in NAFLD. Liver Int. 2020; 40: 2427.

[14]

KleinerDE, BruntEM, Van NattaM, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005; 41: 1313.

[15]

DashS, AydinY, MorozK. Chaperone-mediated autophagy in the liver: good or bad? Cells. 2019; 8: 1308.

[16]

HazariY, Bravo-San Pedro JM, HetzC, GalluzziL, Kroemer G. Autophagy in hepatic adaptation to stress. J Hepatol. 2020; 72: 183.

[17]

ZhouY, DongB, KimKH, et al. Vitamin D receptor activation in liver macrophages protects against hepatic endoplasmic reticulum stress in mice. Hepatology. 2020; 71: 1453.

[18]

FlessaC-M, KyrouI, Nasiri-AnsariN, KaltsasG, KassiE, RandevaHS. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J Cell Biochem. 2022; 123: 1585.

[19]

ChengZM, ChuH, SekiE, Lin R, YangL. Hepatocyte programmed cell death: the trigger for inflammation and fibrosis in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol. 2024; 143: 1921.

[20]

BozaykutP, SahinA, KarademirB, Ozer NK. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis. Mech Ageing Dev. 2016; 157: 17.

[21]

FuS, Watkins SM, HotamisligilGS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 2012; 15: 623.

[22]

FilliolA, Schwabe RF. FoxM1 induces CCl2 secretion from hepatocytes triggering hepatic inflammation, injury, fibrosis, and liver cancer. Cell Mol Gastroenter. 2020; 9: 555.

[23]

KurahashiT, Yoshida Y, OguraS, et al. Forkhead box M1 transcription factor drives liver inflammation linking to hepatocarcinogenesis in mice. Cell Mol Gastroenter. 2020; 9: 425.

[24]

SchusterS, Cabrera D, ArreseM, FeldsteinAE. Triggering and resolution of inflammation in NASH. Nat Rev Gastro Hepat. 2018; 15: 349.

[25]

ArguelloG, BalboaE, ArreseM, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta. 2015; 1852: 1765.

[26]

DevarbhaviH, AsraniSK, ArabJP, Nartey YA, PoseE, KamathPS. Global burden of liver disease: 2023 update. J Hepatol. 2023; 79: 516.

[27]

SimonTG, Roelstraete B, HagströmH, LoombaR, Ludvigsson JF. Progression of non-alcoholic fatty liver disease and long-term outcomes: a nationwide paired liver biopsy cohort study. J Hepatol. 2023; 79: 1366.

[28]

AjoolabadyA, Kaplowitz N, LebeaupinC, et al. Endoplasmic reticulum stress in liver diseases. Hepatology. 2023; 77: 619.

[29]

Madrigal-MatuteJ, De Bruijn J, Van KuijkK, et al. Protective role of chaperone-mediated autophagy against atherosclerosis. Proc Natl Acad Sci U S A. 2022; 119: e2121133119.

[30]

ZhangM, TianSiY, MaSY, et al. Deficient chaperone-mediated autophagy in macrophage aggravates inflammation of nonalcoholic steatohepatitis by targeting Nup85. Liver Int. 2023; 43: 1021.

[31]

AlabdulaaliB, Al-Rashed F, Al-OnaiziM, et al. Macrophages and the development and progression of non-alcoholic fatty liver disease. Front Immunol. 2023; 14: 1195699.

[32]

KopanjaD, ChandV, O’brienE, et al. Transcriptional repression by FoxM1 suppresses tumor differentiation and promotes metastasis of breast cancer. Cancer Res. 2022; 82: 2458.

[33]

KwokCTD, LeungMH, QinJ, et al. The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells. Stem Cell Res. 2016; 16: 651.

[34]

LiX, SuW, WuH, et al. FOXM1 maintains fatty acid homoeostasis through the SET7-H3K4me1-FASN axis. Cell Death Discov. 2023; 9: 310.

[35]

KobiitaA, SilvaPN, SchmidMW, Stoffel M. FoxM1 coordinates cell division, protein synthesis, and mitochondrial activity in a subset of beta cells during acute metabolic stress. Cell Rep. 2023; 42: 112986.

[36]

QinQ, ChenH, XuH, et al. FoxM1 knockdown enhanced radiosensitivity of esophageal cancer by inducing apoptosis. J Cancer. 2023; 14: 454.

[37]

InubushiY, Sakaguchi Y, TachibanaA. Uniform straw-like cell architecture for three-dimensional cell-cell communication assay. Biosci Biotech Bioch. 2020; 84: 1681.

[38]

SunW, LiY, MaD, et al. ALKBH5 promotes lung fibroblast activation and silica-induced pulmonary fibrosis through miR-320a-3p and FOXM1. Cell Mol Biol Lett. 2022; 27: 26.

[39]

GuX, HanY-Y, YangC-Y, et al. Activated AMPK by metformin protects against fibroblast proliferation during pulmonary fibrosis by suppressing FOXM1. Pharmacol Res. 2021; 173: 105844.

[40]

WangP, ZhangH, ZhaoW, Dai N. Silencing of long non-coding RNA KCNQ1OT1 alleviates LPS-induced lung injury by regulating the miR-370-3p/FOXM1 axis in childhood pneumonia. BMC Pulm Med. 2021; 21: 247.

[41]

ChenZ, ZhengB, ZhangZ, Huang Z. Protective role of FBXL19 in Streptococcus pneumoniae-induced lung injury in pneumonia immature mice. J Cardiothorac Surg. 2023; 18: 92.

[42]

ZhaoB, LiM, SuY, et al. Role of transcription factor FOXM1 in diabetes and its complications (review). Int J Mol Med. 2023; 52: 101.

[43]

LoganGJ, de Alencastro G, AlexanderIE, YeohGC. Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease. Int J Biochem Cell B. 2014; 56: 141.

[44]

KoehlerK, EndK, KindB, Landgraf D, MitzscherlingP, HuebnerA. Changes in differential gene expression in fibroblast cells from patients with triple A syndrome under oxidative stress. Horm Metab Res. 2013; 45: 102.

[45]

WuT, LiN, ZhangQ, et al. MKL1 fuels ROS-induced proliferation of vascular smooth muscle cells by modulating FOXM1 transcription. Redox Biol. 2023; 59: 102586.

[46]

ShiY-H, HeX-W, LiuF-D, et al. Comprehensive analysis of differentially expressed profiles of long non-coding RNAs and messenger RNAs in kaolin-induced hydrocephalus. Gene. 2019; 697: 184.

[47]

DaiL, ChenX, ZhangH, et al. RND3 transcriptionally regulated by FOXM1 inhibits the migration and inflammation of synovial fibroblasts in rheumatoid arthritis through the Rho/ROCK pathway. J Interf Cytok Res. 2022; 42: 279.

[48]

HasegawaT, KikutaJ, SudoT, et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol. 2019; 20: 1631.

[49]

FiorilloAA, HeierCR, HuangY-F, et al. Estrogen receptor, inflammatory, and FOXO transcription factors regulate expression of myasthenia gravis-associated circulating microRNAs. Front Immunol. 2020; 11: 151.

[50]

ZhangZ, LiM, SunT, ZhangZ, LiuC. FOXM1: functional roles of FOXM1 in non-malignant diseases. Biomolecules. 2023; 13: 857.

[51]

ZhouM, ShiJ, LanS, GongX. FOXM1 regulates the proliferation, apoptosis and inflammatory response of keratinocytes through the NF-kappaB signaling pathway. Hum Exp Toxicol. 2021; 40: 1130.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/