E2F1/CDK5/DRP1 axis mediates microglial mitochondrial division and autophagy in the pathogenesis of cerebral ischemia-reperfusion injury

Ya-Jing Yuan , Tingting Chen , Yan-Ling Yang , Hao-Nan Han , Li-Ming Xu

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70197

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (2) : e70197 DOI: 10.1002/ctm2.70197
RESEARCH ARTICLE

E2F1/CDK5/DRP1 axis mediates microglial mitochondrial division and autophagy in the pathogenesis of cerebral ischemia-reperfusion injury

Author information +
History +
PDF

Abstract

•Identification of the E2F1/CDK5/DRP1 Axis in CIRI This study reveals that the E2F1 transcription factor upregulates CDK5 expression, which in turn phosphorylates DRP1, promoting excessive mitochondrial fission and inhibiting mitophagy in microglia. This mechanism plays a critical role in cerebral ischemia-reperfusion injury (CIRI).

•Mitochondrial Dysfunction and Neuroinflammation The activation of DRP1 leads to mitochondrial fragmentation and excessive ROS accumulation, triggering microglial activation and inflammatory responses, exacerbating neuronal apoptosis and brain injury in CIRI.

•Therapeutic Potential of E2F1 Silencing Knockdown of E2F1 in microglia effectively reduces mitochondrial damage, restores mitophagy, suppresses inflammation, and improves neurological outcomes in a CIRI mouse model, highlighting a promising therapeutic target for ischemic stroke intervention.

Keywords

CDK5 / cerebral ischemia-reperfusion / DRP1 / E2F1 / microglia / mitochondrial division / mitophagy / single-cell transcriptome sequencing

Cite this article

Download citation ▾
Ya-Jing Yuan, Tingting Chen, Yan-Ling Yang, Hao-Nan Han, Li-Ming Xu. E2F1/CDK5/DRP1 axis mediates microglial mitochondrial division and autophagy in the pathogenesis of cerebral ischemia-reperfusion injury. Clinical and Translational Medicine, 2025, 15(2): e70197 DOI:10.1002/ctm2.70197

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DuL, WangX, ChenS, Guo X. The AIM2 inflammasome: a novel biomarker and target in cardiovascular disease. Pharmacol Res. 2022; 186: 106533.

[2]

ShenM, ZhengY, LiG, et al. Dual antioxidant DH-217 mitigated cerebral ischemia–reperfusion injury by targeting IKKβ/Nrf2/HO-1 signal axis. Neurochem Res. 2022; 48: 579-590.

[3]

WangH, Abajobir AA, AbateKH, et al. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017; 390: 1084-1150.

[4]

KalogerisT, BainesCP, KrenzM, Korthuis RJ. Ischemia/Reperfusion. Compr Physiol. 2016: 113-170.

[5]

ZhengJ, ChenP, ZhongJ, et al. HIF 1α in myocardial ischemia reperfusion injury (Review). Mol Med Rep. 2021; 23.

[6]

XuL, GaoY, HuM, et al. Edaravone dexborneol protects cerebral ischemia reperfusion injury through activating Nrf2/HO-1 signaling pathway in mice. Fundamemntal Clinical Pharma. 2022; 36: 790-800.

[7]

ZhaoX, LiS, MoY, et al. DCA protects against oxidation injury attributed to cerebral ischemia-reperfusion by regulating glycolysis through PDK2-PDH-Nrf2 Axis. Oxid Med Cell Long. 2021; 2021.

[8]

TakedaH, Yamaguchi T, YanoH, TanakaJ. Microglial metabolic disturbances and neuroinflammation in cerebral infarction. J Pharmacol Sci. 2021; 145: 130-139.

[9]

YuZ, ZhuM, ShuD, et al. LncRNA PEG11as aggravates cerebral ischemia/reperfusion injury after ischemic stroke through miR-342-5p/PFN1 axis. Life Sci. 2023; 313: 121276.

[10]

YuanL, ChenW, XiangJ, et al. Advances of circRNA-miRNA-mRNA regulatory network in cerebral ischemia/reperfusion injury. Exp Cell Res. 2022; 419: 113302.

[11]

KhoshnamSE, Moalemnia A, AnbiyaeeO, et al. LncRNA MALAT1 and ischemic stroke: pathogenesis and opportunities. Mol Neurobiol. 2023; 61: 4369-4380.

[12]

EltzschigHK, EckleT. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011; 17: 1391-1401.

[13]

ZengX, ZhangY-D, MaR-Y, et al. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Military Med Res. 2022; 9.

[14]

RobichauxDJ, HarataM, MurphyE, Karch J. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol. 2023; 174: 47-55.

[15]

RasrasS, Kalantari H, RezaeiM, et al. Single-walled and multiwalled carbon nanotubes induce oxidative stress in isolated rat brain mitochondria. Toxicol Ind Health. 2019; 35: 497-506.

[16]

KlimovaN, LongA, ScafidiS, Kristian T. Interplay between NAD+ and acetyl CoA metabolism in ischemia-induced mitochondrial pathophysiology. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease. 2019; 1865: 2060-2067.

[17]

RautS, Bhalerao A, PowersM, et al. Hypometabolism, Alzheimer’s disease, and possible therapeutic targets: an overview. Cells. 2023; 12: 2019.

[18]

CojocaruK-A, Luchian I, GoriucA, et al. Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants. 2023; 12: 658.

[19]

KhanS, BasuS, RajD, LahiriA. Role of mitochondria in regulating immune response during bacterial infection. Int Rev Cell Mol Biol. 2023: 159-200.

[20]

YangL, TaoY, LuoL, et al. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. J Ethnopharmacol. 2022; 288: 114988.

[21]

YuX, LuoY, YangL, et al. P hydroxybenzyl alcohol ameliorates neuronal cerebral ischemia reperfusion injury by activating mitochondrial autophagy through SIRT1. Mol Med Rep. 2023; 27.

[22]

DecoutA, KatzJD, VenkatramanS, AblasserA. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021; 21: 548-569.

[23]

ChenC, XuP. Cellular functions of cGAS-STING signaling. Trends Cell Biol. 2023; 33: 630-648.

[24]

LiA, GaoM, LiuB, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 2022; 13.

[25]

BoguenetM, BouetP-E, SpiersA, et al. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update. 2021; 27: 697-719.

[26]

DaveKM, ZhaoW, HooverC, et al. Extracellular vesicles derived from a human brain endothelial cell line increase cellular ATP levels. AAPS PharmSciTech. 2021; 22.

[27]

WangP, CuiY, RenQ, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 2021; 12.

[28]

WangW, WangB, SunS, et al. Inhibition of adenosine kinase attenuates myocardial ischaemia/reperfusion injury. J Cellular Molecular Medi. 2021; 25: 2931-2943.

[29]

ZhaoW, YaoM, ZhangY, et al. Endothelial cyclin I reduces vulnerability to angiotensin II-induced vascular remodeling and abdominal aortic aneurysm risk. Microvasc Res. 2022; 142: 104348.

[30]

YoshikawaK. Necdin: a purposive integrator of molecular interaction networks for mammalian neuron vitality. Genes Cells. 2021; 26: 641-683.

[31]

DzreyanV, EidM, RodkinS, et al. E2F1 expression and apoptosis initiation in crayfish and rat peripheral neurons and glial cells after axonal injury. Int J Mol Sci. 2022; 23: 4451.

[32]

CaoL-L, WuY-K, LinT-X, et al. CDK5 promotes apoptosis and attenuates chemoresistance in gastric cancer via E2F1 signaling. Cancer Cell Int. 2023; 23.

[33]

Hinojosa-AmayaJM, Lam-Chung CE, Cuevas-RamosD. Recent understanding and future directions of recurrent corticotroph tumors. Front Endocrinol. 2021; 12.

[34]

FerreiraAPA, Casamento A, Carrillo RoasS, et al. Cdk5 and GSK3β inhibit fast endophilin-mediated endocytosis. Nat Commun. 2021; 12.

[35]

PaoP-C, TsaiL-H. Three decades of Cdk5. J Biomed Sci. 2021; 28.

[36]

DoPA, LeeCH. The role of CDK5 in tumours and tumour microenvironments. Cancers. 2020; 13: 101.

[37]

JeongJ, HanW, HongE, et al. Regulation of NLGN3 and the synaptic Rho-GEF signaling pathway by CDK5. J Neurosci. 2023; 43: 7264-7275.

[38]

YamazakiY, Moizumi M, NagaiJ, et al. Requirement of CRMP2 phosphorylation in neuronal migration of developing mouse cerebral cortex and hippocampus and redundant roles of CRMP1 and CRMP4. Cereb Cortex. 2021; 32: 520-527.

[39]

YangZ, HuangC, WenX, et al. Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther. 2022; 30: 1275-1287.

[40]

YangL, ChenH, GuanL, Xu Y. Sevoflurane offers neuroprotection in a cerebral ischemia/reperfusion injury rat model through the E2F1/EZH2/TIMP2 regulatory axis. Mol Neurobiol. 2022; 59: 2219-2231.

[41]

RongR, XiaX, PengH, et al. Cdk5-mediated Drp1 phosphorylation drives mitochondrial defects and neuronal apoptosis in radiation-induced optic neuropathy. Cell Death Dis. 2020; 11.

[42]

ChenD, ZengR, TengG, et al. Menstrual blood-derived mesenchymal stem cells attenuate inflammation and improve the mortality of acute liver failure combining with A2AR agonist in mice. J Gastro and Hepatol. 2021; 36: 2619-2627.

[43]

HuX, ZhaoG-L, XuM-X, et al. Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. J Neuroinflammation. 2021; 18.

[44]

XiaQ, ZhanG, MaoM, et al. TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury. Exp Mol Med. 2022; 54: 180-193.

[45]

WanJ, CuiJ, WangL, et al. RETRACTED ARTICLE: excessive mitochondrial fragmentation triggered by erlotinib promotes pancreatic cancer PANC-1 cell apoptosis via activating the mROS-HtrA2/Omi pathways. Cancer Cell Int. 2018; 18.

[46]

HanB, JiangW, CuiP, et al. Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation. Genome Med. 2021; 13.

[47]

ZhouH, YanL, HuangH, et al. Tat-NTS peptide protects neurons against cerebral ischemia-reperfusion injury via ANXA1 SUMOylation in microglia. Theranostics. 2023; 13: 5561-5583.

[48]

ShanS, ZhangY, ZhaoH, et al. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere. 2022; 298: 134261.

[49]

WuX, LinL, QinJ, et al. CARD3 promotes cerebral ischemia-reperfusion injury via activation of TAK1. JAHA. 2020; 9.

[50]

NakamuraY, LoEH, HayakawaK. Placental mitochondria therapy for cerebral ischemia-reperfusion injury in mice. Stroke. 2020; 51: 3142-3146.

[51]

MaX, ChenA, MeloL, et al. Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology. 2022; 77: 159-175.

[52]

LiaoY, ChengJ, KongX, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics. 2020; 10: 9644-9662.

[53]

JoshiAU, MinhasPS, LiddelowSA, et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019; 22: 1635-1648.

[54]

SuL, ZhangJ, GomezH, et al. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy. 2022; 19: 401-414.

[55]

BharathLP, Agrawal M, McCambridgeG, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020; 32: 44-55.e6.

[56]

WangH, YeJ, PengY, et al. CKLF induces microglial activation via triggering defective mitophagy and mitochondrial dysfunction. Autophagy. 2023; 20: 590-613.

[57]

WangY-L, HanQ-Q, GongW-Q, et al. Microglial activation mediates chronic mild stress-induced depressive-and anxiety-like behavior in adult rats. J Neuroinflammation. 2018; 15.

[58]

PrzykazaŁ. Understanding the connection between common stroke comorbidities, their associated inflammation, and the course of the cerebral ischemia/reperfusion cascade. Front Immunol. 2021; 12.

[59]

YangK, ZengL, GeA, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol. 2022; 13.

[60]

LiuY, MiY, WangY, et al. Loureirin C inhibits ferroptosis after cerebral ischemia reperfusion through regulation of the Nrf2 pathway in mice. Phytomedicine. 2023; 113: 154729.

[61]

ShenL, GanQ, YangY, et al. Mitophagy in cerebral ischemia and ischemia/reperfusion injury. Front Aging Neurosci. 2021; 13.

[62]

NiX-C, WangH-F, CaiY-Y, et al. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol. 2022; 54: 102363.

[63]

MengY, HuangT, ChenX, Lu Y. A comprehensive analysis of the expression and regulation network of lymphocyte-specific protein tyrosine kinase in breast cancer. Transl Cancer Res TCR. 2021; 10: 1519-1536.

[64]

ZhangJ, ChenB, WangY, et al. The E2F1–HOXB9/PBX2–CDK6 axis drives gastric tumorigenesis and serves as a therapeutic target in gastric cancer. J Pathol. 2023; 260: 402-416.

[65]

TongC, MinP-X, ZhangQ, et al. Striatal CDK5 regulates cholinergic neuron activation and dyskinesia-like behaviors through BK channels. Research. 2023; 6.

[66]

DuanC, KuangL, XiangX, et al. Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH-pathways. Cell Death Dis. 2020; 11.

[67]

GuoM, WangX, ZhaoY, et al. Ketogenic diet improves brain ischemic tolerance and inhibits NLRP3 inflammasome activation by preventing Drp1-mediated mitochondrial fission and endoplasmic reticulum stress. Front Mol Neurosci. 2018; 11.

[68]

FlippoKH, Gnanasekaran A, PerkinsGA, et al. AKAP1 protects from cerebral ischemic stroke by inhibiting drp1-dependent mitochondrial fission. J Neurosci. 2018; 38: 8233-8242.

[69]

ChangC-K, KaoM-C, LanC-Y. Antimicrobial activity of the peptide LfcinB15 against Candida albicans. J Fungi. 2021; 7: 519.

[70]

LiH, GuoZ, ChenJ, et al. Computational research of Belnacasan and new Caspase-1 inhibitor on cerebral ischemia reperfusion injury. Aging. 2022; 14: 1848-1864.

[71]

NiR, ZhengD, WangQ, et al. Deletion of capn4 protects the heart against endotoxemic injury by preventing atp synthase disruption and inhibiting mitochondrial superoxide generation. Circ: Heart Fail. 2015; 8: 988-996.

[72]

PapR, PandurE, JánosaG, et al. Lutein exerts antioxidant and anti-inflammatory effects and influences iron utilization of BV-2 microglia. Antioxidants. 2021; 10: 363.

[73]

SimpsonDSA, OliverPL. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants. 2020; 9: 743.

[74]

YeJ, JiangZ, ChenX, et al. The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem. 2017; 142: 215-230.

[75]

HanX, XuT, FangQ, et al. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol. 2021; 44: 102010.

[76]

KimDI, LeeKH, GabrAA, et al. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research. 2016; 1863: 2820-2834.

[77]

WangJ, WangP, LiS, et al. Mdivi-1 prevents apoptosis induced by ischemia–reperfusion injury in primary hippocampal cells via inhibition of reactive oxygen species–activated mitochondrial pathway. J Stroke Cerebrovasc Dis. 2014; 23: 1491-1499.

[78]

ChenC, PengX, TangJ, et al. CDK5 inhibition protects against OGDR induced mitochondrial fragmentation and apoptosis through regulation of Drp1S616 phosphorylation. Life Sci. 2021; 269: 119062.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/