Vitamin K-dependent gamma-carboxyglutamic acid protein 1 promotes pancreatic ductal adenocarcinoma progression through stabilizing oncoprotein KRAS and tyrosine kinase receptor EGFR

Zheng Wu , Qing Ye , Shan Zhang , Li-Peng Hu , Xiao-Qi Wang , Lin-Li Yao , Lei Zhu , Shu-Yu Xiao , Zong-Hao Duan , Xue-Li Zhang , Shu-Heng Jiang , Zhi-Gang Zhang , De-Jun Liu , Dong-Xue Li , Xiao-Mei Yang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70191

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70191 DOI: 10.1002/ctm2.70191
RESEARCH ARTICLE

Vitamin K-dependent gamma-carboxyglutamic acid protein 1 promotes pancreatic ductal adenocarcinoma progression through stabilizing oncoprotein KRAS and tyrosine kinase receptor EGFR

Author information +
History +
PDF

Abstract

•PRRG1 is identified as the transmembrane Gla protein mediating PDAC malignancy.

•PRRG1 recruits and induces self-ubiquitination of membrane-anchoring E3 ligase NEDD4.

•PRRG1 exerts a protective role toward KRAS and EGFR by inhibiting NEDD4.

•The anticoagulant warfarin can be utilized to inhibit PRRG1 and PDAC advancement.

Keywords

KRAS / NEDD4 E3 ligases / pancreatic cancer / PRRG1 / vitamin K-dependent carboxylation

Cite this article

Download citation ▾
Zheng Wu, Qing Ye, Shan Zhang, Li-Peng Hu, Xiao-Qi Wang, Lin-Li Yao, Lei Zhu, Shu-Yu Xiao, Zong-Hao Duan, Xue-Li Zhang, Shu-Heng Jiang, Zhi-Gang Zhang, De-Jun Liu, Dong-Xue Li, Xiao-Mei Yang. Vitamin K-dependent gamma-carboxyglutamic acid protein 1 promotes pancreatic ductal adenocarcinoma progression through stabilizing oncoprotein KRAS and tyrosine kinase receptor EGFR. Clinical and Translational Medicine, 2025, 15(1): e70191 DOI:10.1002/ctm2.70191

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA A Cancer J Clinicians. 2021;71(3):209-249.

[2]

Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326(9):851.

[3]

Zhu YH, Zheng JH, Jia QY, et al. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr). 2023;46(1):17-48.

[4]

Halbrook CJ, Lyssiotis CA, Pasca Di Magliano M, Maitra A. Pancreatic cancer: advances and challenges. Cell. 2023;186(8):1729-1754.

[5]

Chen PC, Ning Y, Li H, et al. Targeting ONECUT3 blocks glycolytic metabolism and potentiates anti-PD-1 therapy in pancreatic cancer. Cell Oncol (Dordr). 2024;47(1):81-96.

[6]

Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther. 2021;6(1):386.

[7]

Commisso C, Davidson SM, Soydaner-Azeloglu RG, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633-637.

[8]

Ramirez C, Hauser AD, Vucic EA, Bar-Sagi D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature. 2019;576(7787):477-481.

[9]

Zeng T, Wang Q, Fu J, et al. Impeded Nedd4-1-mediated Ras degradation underlies Ras-driven tumorigenesis. Cell Reports. 2014;7(3):871-882.

[10]

Schmick M, Vartak N, Papke B, et al. KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport. Cell. 2014;157(2):459-471.

[11]

Tie JK, Stafford DW. Structural and functional insights into enzymes of the vitamin K cycle. J Thromb Haemost. 2016;14(2):236-247.

[12]

Berkner KL, Runge KW. Vitamin K-dependent protein activation: normal gamma-glutamyl carboxylation and disruption in disease. Int J Mol Sci. 2022;23(10):5759.

[13]

Yang X, Wang Z, Zandkarimi F, et al. Regulation of VKORC1L1 is critical for p53-mediated tumor suppression through vitamin K metabolism. Cell Metabolism. 2023;35(8):1474-1490.e8.

[14]

Stanley TB, Jin D-Y, Lin P-J, Stafford DW. The propeptides of the vitamin K-dependent proteins possess different affinities for the vitamin K-dependent carboxylase. J Biol Chem. 1999;274(24):16940-16944.

[15]

Furie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood. 1999;93(6):1798-1808.

[16]

Welsh J, Bak MJ, Narvaez CJ. New insights into vitamin K biology with relevance to cancer. Trends Mol Med. 2022;28(10):864-881.

[17]

Abu-Thuraia A, Goyette MA, Boulais J, et al. AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nat Commun. 2020;11(1):3586.

[18]

Kirane A, Ludwig KF, Sorrelle N, et al. Warfarin blocks gas6-mediated Axl activation required for pancreatic cancer epithelial plasticity and metastasis. Cancer Res. 2015;75(18):3699-3705.

[19]

Kulman JD, Harris JE, Xie L, Davie EW. Identification of two novel transmembrane γ-carboxyglutamic acid proteins expressed broadly in fetal and adult tissues. Proc Natl Acad Sci USA. 2001;98(4):1370-1375.

[20]

Kulman JD, Harris JE, Haldeman BA, Davie EW. Primary structure and tissue distribution of two novel proline-rich γ-carboxyglutamic acid proteins. Proc Natl Acad Sci USA. 1997;94(17):9058-9062.

[21]

Kulman JD, Harris JE, Xie L, Davie EW. Proline-rich Gla protein 2 is a cell-surface vitamin K-dependent protein that binds to the transcriptional coactivator Yes-associated protein. Proc Natl Acad Sci USA. 2007;104(21):8767-8772.

[22]

Yazicioglu MN, Monaldini L, Chu K, et al. Cellular localization and characterization of cytosolic binding partners for Gla domain-containing proteins PRRG4 and PRRG2. J Biol Chem. 2013;288(36):25908-25914.

[23]

Gailani D, Gruber A. Targeting factor XI and factor XIa to prevent thrombosis. Blood. 2024;143(15):1465-1475.

[24]

Novitskiy SV, Zaynagetdinov R, Vasiukov G, et al. Gas6/MerTK signaling is negatively regulated by NF-kappaB and supports lung carcinogenesis. Oncotarget. 2019;10(66):7031-7042.

[25]

Murdaca J, Treins C, Monthouël-Kartmann M-N, et al. Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem. 2004;279(25):26754-26761.

[26]

Lin Q, Wang J, Childress C, Sudol M, Carey DJ, Yang W. HECT E3 ubiquitin ligase Nedd4-1 ubiquitinates ACK and regulates epidermal growth factor (EGF)-induced degradation of EGF receptor and ACK. Mol Cell Biol. 2010;30(6):1541-1554.

[27]

Verma N, Muller AK, Kothari C, et al. Targeting of PYK2 synergizes with EGFR antagonists in basal-like TNBC and circumvents HER3-associated resistance via the NEDD4-NDRG1 axis. Cancer Res. 2017;77(1):86-99.

[28]

Huang Z, Choi BK, Mujoo K, et al. The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling. Oncogene. 2015;34(9):1105-1115.

[29]

Bruce MC, Kanelis V, Fouladkou F, Debonneville A, Staub O, Rotin D. Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem J. 2008;415(1):155-163.

[30]

Song MS, Pandolfi PP. The HECT family of E3 ubiquitin ligases and PTEN. Semin Cancer Biol. 2022;85:43-51.

[31]

Bernassola F, Chillemi G, Melino G. HECT-type E3 ubiquitin ligases in cancer. Trends Biochem Sci. 2019;44(12):1057-1075.

[32]

Liu J, van der Hoeven R, Kattan WE, et al. Glycolysis regulates KRAS plasma membrane localization and function through defined glycosphingolipids. Nat Commun. 2023;14(1):465.

[33]

Diersch S, Wirth M, Schneeweis C, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35(29):3880-3886.

[34]

Ardito CM, Gruner BM, Takeuchi KK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 2012;22(3):304-317.

[35]

Rotin D, Staub O, Haguenauer-Tsapis R. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol. 2000;176(1):1-17.

[36]

Sardana R, Emr SD. membrane protein quality control mechanisms in the endo-lysosome system. Trends Cell Biol. 2021;31(4):269-283.

[37]

Mashayekhi V, Mocellin O, Fens M, Krijger GC, Brosens LAA, Oliveira S. Targeting of promising transmembrane proteins for diagnosis and treatment of pancreatic ductal adenocarcinoma. Theranostics. 2021;11(18):9022-9037.

[38]

Huang X, Chen J, Cao W, et al. The many substrates and functions of NEDD4-1. Cell Death Dis. 2019;10(12):904.

[39]

Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell. 1994;77(4):477-478.

[40]

Fujita-Sato S, Galeas J, Truitt M, et al. Enhanced MET translation and signaling sustains K-Ras-driven proliferation under anchorage-independent growth conditions. Cancer Res. 2015;75(14):2851-2862.

[41]

Yegneswaran S, Deguchi H, Griffin JH. Glucosylceramide, a neutral glycosphingolipid anticoagulant cofactor, enhances the interaction of human-and bovine-activated protein C with negatively charged phospholipid vesicles. J Biol Chem. 2003;278(17):14614-14621.

[42]

Friedman PA. Vitamin K-dependent proteins. N Engl J Med. 1984;310(22):1458-1460.

[43]

Bandyopadhyay PK. Vitamin K-dependent gamma-glutamylcarboxylation: an ancient posttranslational modification. Vitam Horm. 2008;78:157-184.

[44]

Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18(1):153.

[45]

Nasser NJ, Fox J, Agbarya A. Potential mechanisms of cancer-related hypercoagulability. Cancers (Basel). 2020;12(3):566.

[46]

Chiasakul T, Zwicker JI. The impact of warfarin on overall survival in cancer patients. Thromb Res. 2022;213(1):S113-S119.

[47]

Zdzalik-Bielecka D, Poswiata A, Kozik K, et al. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci USA. 2021;118(28):e2024596118.

[48]

Amin MB, Greene FL, Edge SB, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-99.

[49]

Wang YY, Zhou YQ, Xie JX, et al. MAOA suppresses the growth of gastric cancer by interacting with NDRG1 and regulating the Warburg effect through the PI3K/AKT/mTOR pathway. Cell Oncol (Dordr). 2023;46(5):1429-1444.

[50]

Li R, Wang Y, Zhang X, et al. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol Cancer. 2019;18(1):18.

[51]

Zhang S, Yao HF, Li H, et al. Transglutaminases are oncogenic biomarkers in human cancers and therapeutic targeting of TGM2 blocks chemoresistance and macrophage infiltration in pancreatic cancer. Cell Oncol (Dordr). 2023;46(5):1473-1492.

[52]

Commisso C, Flinn RJ, Bar-Sagi D. Determining the macropinocytic index of cells through a quantitative image-based assay. Nat Protoc. 2014;9(1):182-192.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/