iDICss robustly predicts melanoma immunotherapy response by synergizing genomic and transcriptomic knowledge via independent component analysis

Jiayue Qiu , Nana Jin , Lixin Cheng , Chen Huang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70183

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70183 DOI: 10.1002/ctm2.70183
LETTER TO THE JOURNAL

iDICss robustly predicts melanoma immunotherapy response by synergizing genomic and transcriptomic knowledge via independent component analysis

Author information +
History +
PDF

Cite this article

Download citation ▾
Jiayue Qiu, Nana Jin, Lixin Cheng, Chen Huang. iDICss robustly predicts melanoma immunotherapy response by synergizing genomic and transcriptomic knowledge via independent component analysis. Clinical and Translational Medicine, 2025, 15(1): e70183 DOI:10.1002/ctm2.70183

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct Target Ther. 2021;6(1):424.

[2]

Holder AM, Dedeilia A, Sierra-Davidson K, et al. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer. 2024;24(7):498-512.

[3]

Zhang T, Dutton-Regester K, Brown KM, Hayward NK. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res. 2016;29(3):266-283.

[4]

Yan D, Bao S, Zhang Z, Sun J, Zhou M. Leveraging pharmacovigilance data to predict population-scale toxicity profiles of checkpoint inhibitor immunotherapy. Nat Comput Sci. 2024.

[5]

Zhang Z, Chen H, Yan D, Chen L, Sun J, Zhou M. Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade. Oncogenesis. 2023;12(1):37.

[6]

Li Q, Zheng X, Xie J, et al. bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks. Bioinformatics. 2023;39(3).

[7]

Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202-206.

[8]

Hu-Lieskovan S, Robert L, Homet Moreno B, Ribas A. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges. J Clin Oncol. 2014;32(21):2248-2254.

[9]

Chen X, Deng M, Wang Z, Huang C. MMP3C: an in-silico framework to depict cancer metabolic plasticity using gene expression profiles. Brief Bioinform. 2023;25(1).

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/