CMPK2 promotes NLRP3 inflammasome activation via mtDNA-STING pathway in house dust mite-induced allergic rhinitis

YaoMing Zheng , YaDong Xie , JiaYing Li , YuJie Cao , Min Li , Qing Cao , MiaoMiao Han , HongFei Lou , YiLai Shu , Hui Xiao , HuaBin Li

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70180

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70180 DOI: 10.1002/ctm2.70180
RESEARCH ARTICLE

CMPK2 promotes NLRP3 inflammasome activation via mtDNA-STING pathway in house dust mite-induced allergic rhinitis

Author information +
History +
PDF

Abstract

•Cytidine/uridine monophosphate kinase 2 (CMPK2) expression is up-regulated in the nasal mucosa of patients and mice with allergic rhinitis (AR).

•CMPK2 caused NLRP3 inflammasome activation via mitochondrial DNA (mtDNA)-STING pathway.

•Blocking CMPK2 or STING signalling significantly reduced the activation of NLRP3 in house dust mite (HDM)-challenged mice and human nasal epithelial cells (HNEPCs).

Keywords

allergic rhinitis / CMPK2 / mitochondrial DNA / NLRP3 inflammasome / STING

Cite this article

Download citation ▾
YaoMing Zheng, YaDong Xie, JiaYing Li, YuJie Cao, Min Li, Qing Cao, MiaoMiao Han, HongFei Lou, YiLai Shu, Hui Xiao, HuaBin Li. CMPK2 promotes NLRP3 inflammasome activation via mtDNA-STING pathway in house dust mite-induced allergic rhinitis. Clinical and Translational Medicine, 2025, 15(1): e70180 DOI:10.1002/ctm2.70180

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wise SK, Damask C, Roland LT, et al. International consensus statement on allergy and rhinology: allergic rhinitis -2023. Int Forum Allergy Rhinol. 2023;13(4):293-859.

[2]

Zhang Y, Zhang L. Increasing prevalence of allergic rhinitis in China. Allergy Asthma Immunol Res. 2019;11(2):156-169.

[3]

Bernstein JA, Bernstein JS, Makol R, Ward S. Allergic rhinitis: a review. JAMA. 2024;331(10):866-877.

[4]

Bousquet J, Anto JM, Bachert C, et al. Allergic rhinitis. Nat Rev Dis Prim. 2020;6(1):95.

[5]

Zuberbier T, Lötvall J, Simoens S, Subramanian SV, Church MK. Economic burden of inadequate management of allergic diseases in the European Union: a GA(2) LEN review. Allergy. 2014;69(10):1275-1279.

[6]

Li X, Xu X, Li J, et al. Direct and indirect costs of allergic and non-allergic rhinitis to adults in Beijing, China. Clin Transl Allergy. 2022;12(4):e12148.

[7]

Vandenplas O, Suarthana E, Rifflart C, et al. The impact of work-related rhinitis on quality of life and work productivity: a general workforce-based survey. J Allergy Clin Immunol Pract. 2020;8(5):1583-1591.e5.

[8]

Calderón MA, Linneberg A, Kleine-Tebbe J, et al. Respiratory allergy caused by house dust mites: what do we really know? J Allergy Clin Immunol. 2015;136(1):38-48.

[9]

Ciprandi G, Tosca MA. House dust mites-driven allergic rhinitis: could its natural history be modified? Expert Rev Clin Immunol. 2021;17(2):109-114.

[10]

Acevedo N, Zakzuk J, Caraballo L. House dust mite allergy under changing environments. Allergy Asthma Immunol Res. 2019;11(4):450-469.

[11]

Miller JD. The role of dust mites in allergy. Clin Rev Allergy Immunol. 2019;57(3):312-329.

[12]

Zuiani C, Custovic A. Update on house dust mite allergen avoidance measures for asthma. Curr Allergy Asthma Rep. 2020;20(9):50.

[13]

Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48(4):331-344.

[14]

Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 2023;41:301-316.

[15]

Leszczyńska K, Jakubczyk D, Górska S. The NLRP3 inflammasome as a new target in respiratory disorders treatment. Front Immunol. 2022;13:1006654.

[16]

Lara-Reyna S, Caseley EA, Topping J, et al. Inflammasome activation: from molecular mechanisms to autoinflammation. Clin Transl Immunol. 2022;11(7):e1404.

[17]

Xu S, Wang D, Tan L, Lu J. The role of NLRP3 inflammasome in type 2 inflammation related diseases. Autoimmunity. 2024;57(1):2310269.

[18]

Bogefors J, Rydberg C, Uddman R, et al. Nod1, Nod2 and Nalp3 receptors, new potential targets in treatment of allergic rhinitis? Allergy. 2010;65(10):1222-1226.

[19]

Cheng N, Wang Y, Gu Z. Understanding the role of NLRP3-mediated pyroptosis in allergic rhinitis: a review. Biomed Pharmacother. 2023;165:115203.

[20]

Yang Z, Liang C, Wang T, et al. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis. Biochem Biophys Res Commun. 2020;522(1):61-67.

[21]

Zhang W, Ba G, Tang R, Li M, Lin H. Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model. Int Immunopharmacol. 2020;83:106394.

[22]

Dai X, Sayama K, Tohyama M, et al. Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. J Allergy Clin Immunol. 2011;127(3):806-814.e1-4.

[23]

Kim SR, Park HJ, Lee KB, et al. Epithelial PI3K-δ promotes house dust mite-induced allergic asthma in NLRP3 inflammasome-dependent and -independent manners. Allergy Asthma Immunol Res. 2020;12(2):338-358.

[24]

Zhang Y, Song Y, Wang C, et al. Panax notoginseng saponin R1 attenuates allergic rhinitis through AMPK/Drp1 mediated mitochondrial fission. Biochem Pharmacol. 2022;202:115106.

[25]

Liu S, Wang C, Zhang Y, et al. Polydatin inhibits mitochondrial damage and mitochondrial ROS by promoting PINK1-Parkin-mediated mitophagy in allergic rhinitis. FASEB J. 2023;37(4):e22852.

[26]

Zhong Z, Liang S, Sanchez-Lopez E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560(7717):198-203.

[27]

Jin L, Chen Q, Hu K, et al. The FTO-CMPK2 pathway in fibroblast-like synoviocytes modulates rheumatoid arthritis synovial inflammation and cartilage homeostasis via mtDNA regulation. Int J Biol Sci. 2024;20(5):1617-1633.

[28]

Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21(4):e49799.

[29]

Chen S, Liao Z, Xu P. Mitochondrial control of innate immune responses. Front Immunol. 2023;14:1166214.

[30]

Kim J, Kim H, Chung JH. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp Mol Med. 2023;55(3):510-519.

[31]

Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: emerging strategies for autoimmune diseases therapy. Front Immunol. 2022;13:954129.

[32]

Zheng W, Liu A, Xia N, et al. How the innate immune DNA sensing cGAS-STING pathway is involved in apoptosis. Int J Mol Sci. 2023;24(3):3029.

[33]

Zhang W, Li G, Luo R, et al. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp Mol Med. 2022;54(2):129-142.

[34]

An C, Sun F, Liu C, et al. IQGAP1 promotes mitochondrial damage and activation of the mtDNA sensor cGAS-STING pathway to induce endothelial cell pyroptosis leading to atherosclerosis. Int Immunopharmacol. 2023;123:110795.

[35]

Zhang Y, Li Z, Hong W, et al. STING-dependent sensing of self-DNA driving pyroptosis contributes to radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2023;117(4):928-941.

[36]

Wang Q, Bu Q, Liu M, et al. XBP1-mediated activation of the STING signalling pathway in macrophages contributes to liver fibrosis progression. JHEP Rep: Innov Hepatol. 2022;4(11):100555.

[37]

Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846-1847.

[38]

Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

[39]

Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-D452.

[40]

Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504.

[41]

Chin C, Chen S, Wu H, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):S11.

[42]

Wu C, Orozco C, Boyer J, et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 2009;10(11):R130.

[43]

Cao Y, Hu X, Zhou C, et al. Increased IL-1α expression in chronic rhinosinusitis with nasal polyps. Eur Arch Oto-Rhino-Laryngol. 2023;280(3):1209-1217.

[44]

Xie Y, Li M, Chen K, et al. Necroptosis underlies neutrophilic inflammation associated with the chronic rhinosinusitis with nasal polyps (CRSwNP). J Inflamm Res. 2021;14:3969-3983.

[45]

Zhou L, Zheng Y, Liao W, et al. MUC1 deficiency promotes nasal epithelial barrier dysfunction in subjects with allergic rhinitis. J Allergy Clin Immunol. 2019;144(6):1716-1719.e5.

[46]

Ning L, Wei W, Wenyang J, Rui X, Qing G. Cytosolic DNA-STING-NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide. Clin Transl Med. 2020;10(7):e228.

[47]

Wu W, Bao W, Chen X, et al. Endothelial Gata6 deletion reduces monocyte recruitment and proinflammatory macrophage formation and attenuates atherosclerosis through Cmpk2-Nlrp3 pathways. Redox Biol. 2023;64:102775.

[48]

Qi X, Lin W, Wu Y, et al. CBD promotes oral ulcer healing via inhibiting CMPK2-mediated inflammasome. J Dent Res. 2022;101(2):206-215.

[49]

VanPortfliet JJ, Chute C, Lei Y, Shutt TE, West AP. Mitochondrial DNA release and sensing in innate immune responses. Hum Mol Genet. 2024;33(R1):R80-R91.

[50]

Huang B, Zhang N, Qiu X, et al. Mitochondria-targeted SkQ1 nanoparticles for dry eye disease: inhibiting NLRP3 inflammasome activation by preventing mitochondrial DNA oxidation. J Control Release. 2024;365:1-15.

[51]

Cabral A, Cabral JE, Wang A, et al. Differential binding of NLRP3 to non-oxidized and Ox-mtDNA mediates NLRP3 inflammasome activation. Commun Biol. 2023;6(1):578.

[52]

Xian H, Watari K, Sanchez-Lopez E, et al. Oxidized DNA fragments exit mitochondria via mPTP-and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity. 2022;55(8):1370-1385.e8.

[53]

Zhou L, Zhang Y, Yang F, et al. Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway. Cell Commun Signal: CCS. 2021;19(1):58.

[54]

Ying S, O’Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(12):8183-8190.

[55]

Pichavant M, Charbonnier A, Taront S, et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol. 2005;115(4):771-778.

[56]

Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013-1022.

[57]

Tao G, Liao W, Hou J, et al. Advances in crosstalk among innate immune pathways activated by mitochondrial DNA. Heliyon. 2024;10(1):e24029.

[58]

Wu Y, Xu W, Zheng L, et al. 4-Octyl itaconate ameliorates alveolar macrophage pyroptosis against ARDS via rescuing mitochondrial dysfunction and suppressing the cGAS/STING pathway. Int Immunopharmacol. 2023;118:110104.

[59]

Li M, Wen X, Liu X, Wang Y, Yan L. LPS-induced activation of the cGAS-STING pathway is regulated by mitochondrial dysfunction and mitochondrial DNA leakage in endometritis. J Inflamm Res. 2022;15:5707-5720.

[60]

Ouyang W, Wang S, Yan D, et al. The cGAS-STING pathway-dependent sensing of mitochondrial DNA mediates ocular surface inflammation. Signal Transduct Targeted Ther. 2023;8(1):371.

[61]

Cao Y, Chen X, Zhu Z, et al. STING contributes to lipopolysaccharide-induced tubular cell inflammation and pyroptosis by activating endoplasmic reticulum stress in acute kidney injury. Cell Death Dis. 2024;15(3):217.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/