Preclinical B cell depletion and safety profile of a brain-shuttled crystallizable fragment-silenced CD20 antibody

Vanessa L. Schumacher , Solen Pichereau , Juliana Bessa , Juergen Bachl , Sylvia Herter , Felix C. Weber , Johannes Auer , Anja Kipar , Michael Winter , Martina Stirn , Michael B. Otteneder , Kevin Brady , Anne Eichinger-Chapelon , Adrian Roth , Nadine Stokar-Regenscheit , Nicole Clemann , Shanon Seger , Claudia Senn , Juliane Hönig , Cordula Jany , Elisa Di Lenarda , Alain C. Tissot , Christian Klein , H.-Christian von Büdingen , Robert Mader , Mohammed Ullah , Niels Janssen , Eduard Urich

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70178

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70178 DOI: 10.1002/ctm2.70178
RESEARCH ARTICLE

Preclinical B cell depletion and safety profile of a brain-shuttled crystallizable fragment-silenced CD20 antibody

Author information +
History +
PDF

Abstract

•The BBB hinders mAb-based brain disorder therapies

•A brain-targeted B-cell-depleting mAb for MS that efficiently crosses the BBB via hTfR1 was developed using Brainshuttle technology (1a and 1b)

•The Brainshuttle-CD20 mAb was well tolerated (2a and 2b) and displayed B-cell-killing properties (1c), paving the way for future development and clinical translation of TfR1-targetingtherapies for increased brain penetration

Keywords

antibodies / antigens / blood-brain barrier / CD20 / central nervous system / monoclonal / multiple sclerosis

Cite this article

Download citation ▾
Vanessa L. Schumacher,Solen Pichereau,Juliana Bessa,Juergen Bachl,Sylvia Herter,Felix C. Weber,Johannes Auer,Anja Kipar,Michael Winter,Martina Stirn,Michael B. Otteneder,Kevin Brady,Anne Eichinger-Chapelon,Adrian Roth,Nadine Stokar-Regenscheit,Nicole Clemann,Shanon Seger,Claudia Senn,Juliane Hönig,Cordula Jany,Elisa Di Lenarda,Alain C. Tissot,Christian Klein,H.-Christian von Büdingen,Robert Mader,Mohammed Ullah,Niels Janssen,Eduard Urich. Preclinical B cell depletion and safety profile of a brain-shuttled crystallizable fragment-silenced CD20 antibody. Clinical and Translational Medicine, 2025, 15(3): e70178 DOI:10.1002/ctm2.70178

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M, Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev. 2016;45(17):4690-4707.

[2]

Kariolis MS, Wells RC, Getz JA, et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020;12(545):eaay1359.

[3]

Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81(1):49-60.

[4]

Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959-1972.

[5]

Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol. 2012;503:269-292.

[6]

Staquicini FI, Ozawa MG, Moya CA, et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest. 2011;121(1):161-173.

[7]

Wong AD, Ye M, Levy AF, et al. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;6:7-7.

[8]

Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3(84):84ra44.

[9]

Ullman JC, Arguello A, Getz JA, et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med. 2020;12(545):eaay1163.

[10]

Freskgård PO, Urich E. Antibody therapies in CNS diseases. Neuropharmacology. 2017;120:38-55.

[11]

Grimm HP, Schumacher V, Schäfer M, et al. Delivery of the Brainshuttle amyloid-beta antibody fusion trontinemab to non-human primate brain and projected efficacious dose regimens in humans. MAbs. 2023;15(1):2261509.

[12]

Wallin MT, Culpepper WJ, Campbell JD, et al. The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology. 2019;92(10):e1029-e1040.

[13]

Furuzawa-Carballeda J, Vargas-Rojas MI, Cabral AR. Autoimmune inflammation from the Th17 perspective. Autoimmun Rev. 2007;6(3):169-175.

[14]

Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683-747.

[15]

Chisari CG, Sgarlata E, Arena S, et al. Rituximab for the treatment of multiple sclerosis: a review. J Neurol. 2021:1-25.

[16]

Gasperi C, Stüve O, Hemmer B. B cell-directed therapies in multiple sclerosis. Neurodegener Dis Manag. 2016;6(1):37-47.

[17]

Gelfand JM, Cree BAC, Hauser SL. Ocrelizumab and other CD20(+) B-cell-depleting therapies in multiple sclerosis. Neurotherapeutics. 2017;14(4):835-841.

[18]

Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018;83(1):13-26.

[19]

Jakimovski D, Weinstock-Guttman B, Ramanathan M, et al. Ocrelizumab: a B-cell depleting therapy for multiple sclerosis. Expert Opin Biol Ther. 2017;17(9):1163-1172.

[20]

Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209-220.

[21]

Sabatino JJ Jr., Zamvil SS, Hauser SL. B-cell therapies in multiple sclerosis. Cold Spring Harb Perspect Med. 2019;9(2):a032037.

[22]

Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179-199.

[23]

Michel L, Touil H, Pikor NB, et al. B cells in the multiple sclerosis central nervous system: trafficking and contribution to CNS-compartmentalized inflammation. Front Immunol. 2015;6:636.

[24]

Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221-234.

[25]

Magliozzi R, Howell OW, Reeves C, et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68(4):477-493.

[26]

Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol. 2023;19(8):461-476.

[27]

Florou D, Katsara M, Feehan J, Dardiotis E, Apostolopoulos V. Anti-CD20 agents for multiple sclerosis: spotlight on ocrelizumab and ofatumumab. Brain Sci. 2020;10(10):758.

[28]

Klein C, Lammens A, Schäfer W, et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22-33.

[29]

Tobinai K, Klein C, Oya N, Fingerle-Rowson G. A Review of obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv Ther. 2017;34(2):324-356.

[30]

Herter S, Herting F, Mundigl O, et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12(10):2031-2042.

[31]

Mössner E, Brünker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115(22):4393-4402.

[32]

Tacke S, Chunder R, Schropp V, Urich E, Kuerten S. Effects of a fully humanized type II anti-CD20 monoclonal antibody on peripheral and CNS B cells in a transgenic mouse model of multiple sclerosis. Int J Mol Sci. 2022;23(6):3172.

[33]

Rougé L, Chiang N, Steffek M, et al. Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science. 2020;367(6483):1224-1230.

[34]

Kumar A, Planchais C, Fronzes R, Mouquet H, Reyes N. Binding mechanisms of therapeutic antibodies to human CD20. Science. 2020;369(6505):793-799.

[35]

Davies A, Kater AP, Sharman JP, et al. Obinutuzumab in the treatment of B-cell malignancies: a comprehensive review. Future Oncology. 2022;18(26):2943-2966.

[36]

Peters S, Angevin E, Alonso-Gordoa T, et al. Obinutuzumab pretreatment as a novel approach to mitigate formation of anti-drug antibodies against cergutuzumab amunaleukin in patients with solid tumors. Clin Cancer Res. 2024;30(8):1630-1641.

[37]

Herter S, Herting F, Muth G, et al. GA101 P329GLALA, a variant of obinutuzumab with abolished ADCC, ADCP and CDC function but retained cell death induction, is as efficient as rituximab in B-cell depletion and antitumor activity. Haematologica. 2018;103(2):e78-e81.

[38]

Schlothauer T, Herter S, Koller CF, et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016;29(10):457-466.

[39]

Couch JA, Yu YJ, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med. 2013;5(183):183ra57.

[40]

Pardridge WM, Boado RJ, Patrick DJ, Ka-Wai Hui E, Lu JZ. Blood-brain barrier transport, plasma pharmacokinetics, and neuropathology following chronic treatment of the rhesus monkey with a brain penetrating humanized monoclonal antibody against the human transferrin receptor. Mol Pharm. 2018;15(11):5207-5216.

[41]

Edavettal S, Cejudo-Martin P, Dasgupta B, et al. Enhanced delivery of antibodies across the blood-brain barrier via TEMs with inherent receptor-mediated phagocytosis. Med. 2022;3(12):860-882.e15.

[42]

Weber F, Bohrmann B, Niewoehner J, et al. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 2018;22(1):149-162.

[43]

Merchant AM, Zhu Z, Yuan JQ, et al. An efficient route to human bispecific IgG. Nat Biotechnol. 1998;16(7):677-681.

[44]

Klein C, Schaefer W, Regula JT. The use of CrossMAb technology for the generation of bi-and multispecific antibodies. MAbs. 2016;8(6):1010-1020.

[45]

Schaefer W, Regula JT, Bähner M, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci USA. 2011;108(27):11187.

[46]

Estrov Z, Talpaz M, Ku S, et al. Z-138:a new mature B-cell acute lymphoblastic leukemia cell line from a patient with transformed chronic lymphocytic leukemia. Leuk Res. 1998;22(4):341-353

[47]

Clavarino G, Delouche N, Vettier C, et al. Novel strategy for phenotypic characterization of human B lymphocytes from precursors to effector cells by flow cytometry. PLoS One. 2016;11(9):e0162209.

[48]

Gong Q, Ou Q, Ye S, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174(2):817.

[49]

Ahuja A, Shupe J, Dunn R, et al. Depletion of B cells in murine lupus: efficacy and resistance. J Immunol. 2007;179(5):3351-3361.

[50]

Bessa J, Boeckle S, Beck H, et al. The immunogenicity of antibody aggregates in a novel transgenic mouse model. Pharm Res. 2015;32(7):2344-2359.

[51]

Leon LR. Hypothermia in systemic inflammation: role of cytokines. Front Biosci. 2004;9:1877-1888.

[52]

Husar E, Solonets M, Kuhlmann O, et al. Hypersensitivity reactions to obinutuzumab in cynomolgus monkeys and relevance to humans. Toxicol Pathol. 2017;45(5):676-686.

[53]

Grimm HP, Schick E, Hainzl D, et al. PKPD assessment of the anti-CD20 antibody abinutuzumab in cynomolgus monkey is feasible despite marked anti-drug antibody response in this species. J Pharm Sci. 2019;108(11):3729-3736.

[54]

Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents. Front Immunol. 2021;12(583):607692.

[55]

Neiveyans M, Melhem R, Arnoult C, et al. A recycling anti-transferrin receptor-1 monoclonal antibody as an efficient therapy for erythroleukemia through target up-regulation and antibody-dependent cytotoxic effector functions. MAbs. 2019;11(3):593-605.

[56]

Komori M, Lin YC, Cortese I, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol. 2016;3(3):166-179.

[57]

Palanichamy A, Apeltsin L, Kuo TC, et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med. 2014;6(248):248ra106-248ra106.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

252

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/