Immunoregulatory programs in anti-N-methyl-D-aspartate receptor encephalitis identified by single-cell multi-omics analysis

Xinhui Li , Yicong Xu , Weixing Zhang , Zihao Chen , Dongjie Peng , Wenxu Ren , Zhongjie Tang , Huilu Li , Jin Xu , Yaqing Shu

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70173

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70173 DOI: 10.1002/ctm2.70173
RESEARCH ARTICLE

Immunoregulatory programs in anti-N-methyl-D-aspartate receptor encephalitis identified by single-cell multi-omics analysis

Author information +
History +
PDF

Abstract

•Significant B cell clonal expansion, particularly in plasma cells, driven by antigen recognition.

•IFN-I pathway activation in plasma cells boosts their antibody production and potentially exacerbates immune dysregulation.

•TLR2 pathway activation in myeloid cells contributes to TNF-α secretion and could influence adaptive immune responses.

Keywords

anti- N-methyl-D-aspartate receptor encephalitis / autoimmune disease / regulatory program / single-cell multi-omics sequencing

Cite this article

Download citation ▾
Xinhui Li, Yicong Xu, Weixing Zhang, Zihao Chen, Dongjie Peng, Wenxu Ren, Zhongjie Tang, Huilu Li, Jin Xu, Yaqing Shu. Immunoregulatory programs in anti-N-methyl-D-aspartate receptor encephalitis identified by single-cell multi-omics analysis. Clinical and Translational Medicine, 2025, 15(1): e70173 DOI:10.1002/ctm2.70173

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157-165.

[2]

Dalmau J, Tüzün E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61:25-36.

[3]

Gong X, Wang N, Zhu H, Tang N, Wu K, Meng Q. Anti-NMDAR antibodies, the blood-brain barrier, and anti-NMDAR encephalitis. Front Neurol. 2023;14:1283511.

[4]

Liu CY, Zhu J, Zheng XY, Ma C, Wang X. Anti-N-methyl-D-aspartate receptor encephalitis: a severe, potentially reversible autoimmune encephalitis. Mediators Inflamm. 2017;2017:6361479.

[5]

Huang YQ, Xiong H. Anti-NMDA receptor encephalitis: a review of mechanistic studies. Int J Physiol Pathophysiol Pharmacol. 2021;13:1-11.

[6]

Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10:63-74.

[7]

Sun B, Ramberger M, O’Connor KC, Bashford-Rogers RJM, Irani SR. The B-cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat Rev Neurol. 2020;16:481-492.

[8]

Wagnon I, Hélie P, Bardou I, et al. Autoimmune encephalitis mediated by B-cell response against N-methyl-d-aspartate receptor. Brain J Neurol. 2020;143:2957-2972.

[9]

Jiang Y, Dai S, Jia L, et al. Single-cell transcriptomics reveals cell type-specific immune regulation associated with anti-NMDA receptor encephalitis in humans. Front Immunol. 2022;13:1075675.

[10]

Li S, Hu X, Wang M, et al. Single-cell RNA sequencing reveals diverse B-cell phenotypes in patients with anti-NMDAR encephalitis. Psychiatry Clin Neurosci. 2024;78:197-208.

[11]

Liba Z, Kayserova J, Elisak M, et al. Anti-N-methyl-D-aspartate receptor encephalitis: the clinical course in light of the chemokine and cytokine levels in cerebrospinal fluid. J Neuroinflamm. 2016;13:55.

[12]

Kothur K, Wienholt L, Mohammad SS, et al. Utility of CSF cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and enteroviral encephalitis. PLoS One. 2016;11:e0161656.

[13]

Feng J, Fan S, Sun Y, Ren H, Guan H, Wang J. Comprehensive B-cell immune repertoire analysis of anti-NMDAR encephalitis and anti-LGI1 encephalitis. Front Immunol. 2021;12:717598.

[14]

Vinuesa CG, Grenov A, Kassiotis G. Innate virus-sensing pathways in B-cell systemic autoimmunity. Science. 2023;380:478-484.

[15]

Duong E, Fessenden TB, Lutz E, et al. Type I interferon activates MHC class I-dressed CD11b(+) conventional dendritic cells to promote protective anti-tumor CD8(+) T cell immunity. Immunity. 2022;55:308-323.e9.

[16]

Thompson LJ, Kolumam GA, Thomas S, Murali-Krishna K. Innate inflammatory signals induced by various pathogens differentially dictate the IFN-I dependence of CD8 T cells for clonal expansion and memory formation. J Immunol. 2006;177:1746-1754.

[17]

Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570.

[18]

Giladi A, Wagner LK, Li H, et al. Cxcl10(+) monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation. Nat Immunol. 2020;21:525-534.

[19]

Mimitou EP, Lareau CA, Chen KY, et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol. 2021;39:1246-1258.

[20]

Tang Z, Zhang W, Shi P, et al. MitoSort: robust demultiplexing of pooled single-cell genomics data using endogenous mitochondrial variants. Genomics Proteomics Bioinformatics. 2024;22(5):qzae073.

[21]

Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med. 2018;378:840-851.

[22]

Malviya M, Barman S, Golombeck KS, et al. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann Clin Transl Neurol. 2017;4:768-783.

[23]

Planagumà J, Leypoldt F, Mannara F, et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain J Neurol. 2015;138:94-109.

[24]

Tangye SG, Pathmanandavel K, Ma CS. Cytokine-mediated STAT-dependent pathways underpinning human B-cell differentiation and function. Curr Opin Immunol. 2023;81:102286.

[25]

Tellier J, Nutt SL. Plasma cells: the programming of an antibody-secreting machine. Eur J Immunol. 2019;49:30-37.

[26]

Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881-891.

[27]

Tellier J, Shi W, Minnich M, et al. Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat Immunol. 2016;17:323-330.

[28]

Minnich M, Tagoh H, Bönelt P, et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nat Immunol. 2016;17:331-343.

[29]

Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5(2):15.

[30]

Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol. 2019;4:914-924.

[31]

Ye L, Schnepf D, Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol. 2019;19:614-625.

[32]

Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol. 2024;133:112077.

[33]

Lehtonen A, Lund R, Lahesmaa R, Julkunen I, Sareneva T, Matikainen S. IFN-alpha and IL-12 activate IFN regulatory factor 1 (IRF-1), IRF-4, and IRF-8 gene expression in human NK and T cells. Cytokine. 2003;24:81-90.

[34]

Ji L, Li T, Chen H, et al. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci. 2023;13:230.

[35]

Barnas JL, Albrecht J, Meednu N, et al. B-cell activation and plasma cell differentiation are promoted by IFN-λ in systemic lupus erythematosus. J Immunol. 2021;207:2660-2672.

[36]

Zhang C, Zhang TX, Liu Y, et al. B-cell compartmental features and molecular basis for therapy in autoimmune disease. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1070.

[37]

Heaton H, Talman AM, Knights A, et al. Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat Methods. 2020;17:615-620.

[38]

Wang P, Luo M, Zhou W, et al. Global characterization of peripheral B cells in Parkinson’s disease by single-cell RNA and BCR sequencing. Front Immunol. 2022;13:814239.

[39]

James LK. B cells defined by immunoglobulin isotypes. Clin Exp Immunol. 2022;210:230-239.

[40]

Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125:S41-S52.

[41]

Gearhart PJ. Generation of immunoglobulin variable gene diversity. Immunol Today. 1982;3:107-112.

[42]

Allen CD, Okada T, Cyster JG. Germinal-center organization and cellular dynamics. Immunity. 2007;27:190-202.

[43]

Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131:959-971.

[44]

Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499-511.

[45]

Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Science. 2019;363(6431):eaat8657.

[46]

Yoneyama M, Fujita T. Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem. 2007;282:15315-15318.

[47]

Chen G, Shaw MH, Kim YG, Nuñez G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol. 2009;4:365-398.

[48]

Paerewijck O, Lamkanfi M. The human inflammasomes. Mol Aspects Med. 2022;88:101100.

[49]

Liu C, Shen Y, Huang L, Wang J. TLR2/caspase-5/Panx1 pathway mediates necrosis-induced NLRP3 inflammasome activation in macrophages during acute kidney injury. Cell Death Discov. 2022;8:232.

[50]

Grishman EK, White PC, Savani RC. Toll-like receptors, the NLRP3 inflammasome, and interleukin-1β in the development and progression of type 1 diabetes. Pediatr Res. 2012;71:626-632.

[51]

Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

[52]

Shu Y, Peng F, Zhao B, et al. Transfer of patient’s peripheral blood mononuclear cells (PBMCs) disrupts blood-brain barrier and induces anti-NMDAR encephalitis: a study of novel humanized PBMC mouse model. J Neuroinflamm. 2023;20:164.

[53]

López de Padilla CM, Niewold TB. The type I interferons: basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene. 2016;576:14-21.

[54]

Bashford-Rogers RJM, Bergamaschi L, McKinney EF, et al. Analysis of the B-cell receptor repertoire in six immune-mediated diseases. Nature. 2019;574:122-126.

[55]

De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol. 2015;15:137-148.

[56]

Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36-49.

[57]

Baccala R, Kono DH, Theofilopoulos AN. Interferons as pathogenic effectors in autoimmunity. Immunol Rev. 2005;204:9-26.

[58]

Yin X, Kim K, Suetsugu H, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis. 2021;80:632-640.

[59]

Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47:1457-1464.

[60]

Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol. 2005;175:4189-4193.

[61]

Chen ST, Li JY, Zhang Y, Gao X, Cai H. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. J Immunol. 2012;188:668-677.

[62]

Li Y, Yang K, Zhang F, et al. Identification of cerebrospinal fluid biomarker candidates for anti-N-methyl-D-aspartate receptor encephalitis: high-throughput proteomic investigation. Front Immunol. 2022;13:971659.

[63]

Chen J, Ding Y, Zheng D, et al. Elevation of YKL-40 in the CSF of anti-NMDAR encephalitis patients is associated with poor prognosis. Front Neurol. 2018;9:727.

[64]

Mahapatro M, Erkert L, Becker C. Cytokine-mediated crosstalk between immune cells and epithelial cells in the gut. Cells. 2021;10(1):111.

[65]

Olbei M, Thomas JP, Hautefort I, et al. CytokineLink: a cytokine communication map to analyse immune responses-case studies in inflammatory bowel disease and COVID-19. Cells. 2021;10(9):2242.

[66]

Webster JD, Vucic D. The balance of TNF mediated pathways regulates inflammatory cell death signalling in healthy and diseased tissues. Front Cell Dev Biol. 2020;8:365.

[67]

Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine. 2021;91:153712.

[68]

Chen G, Zhang Y, Zhang Y, et al. Differential immune responses in pregnant patients recovered from COVID-19. Signal Transduct Target Ther. 2021;6:289.

[69]

Zhao Q, Liu J, Deng H, et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell. 2020;183:76-93.e2.

[70]

Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15:391-404.

[71]

Lareau CA, Ludwig LS, Muus C, et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol. 2021;39:451-461.

[72]

Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888-1902.

[73]

Hu C, Li T, Xu Y, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2023;51:D870-D876.

[74]

Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179:829-845.

[75]

Sun Y, Wu L, Zhong Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021;184:404-421.

[76]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

[77]

Chen T, Chen X, Zhang S, et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinformatics. 2021;19:578-583.

[78]

CNCB-NGDC Members and Partners. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022;50:D27-D38.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/