Lower respiratory tract microbiome dysbiosis impairs clinical responses to immune checkpoint blockade in advanced non-small-cell lung cancer

Yong Zhang , Xiang-Xiang Chen , Ruo Chen , Ling Li , Qing Ju , Dan Qiu , Yuan Wang , Peng-Yu Jing , Ning Chang , Min Wang , Jian Zhang , Zhi-Nan Chen , Ke Wang

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70170

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70170 DOI: 10.1002/ctm2.70170
RESEARCH ARTICLE

Lower respiratory tract microbiome dysbiosis impairs clinical responses to immune checkpoint blockade in advanced non-small-cell lung cancer

Author information +
History +
PDF

Abstract

•Alterations of the lower respiratory tract microbiome indicate different clinical responses to ICB within advanced NSCLC.

•Reduced microbial diversity of lower respiratory tracts impairs anti-tumoral performances.

•Microbe-derived metabolites perform as a dominant regulator to remodify the microecological environment in lower respiratory tracts.

•Multi-omics sequencings of the lower respiratory tract possess the potential to predict the long-term clinical responses to ICB among advanced NSCLC.

Keywords

advanced non-small-cell lung cancer / clinical outcomes / immune checkpoint blockade therapy / lower respiratory tract microbiome / multi-omics analysis

Cite this article

Download citation ▾
Yong Zhang, Xiang-Xiang Chen, Ruo Chen, Ling Li, Qing Ju, Dan Qiu, Yuan Wang, Peng-Yu Jing, Ning Chang, Min Wang, Jian Zhang, Zhi-Nan Chen, Ke Wang. Lower respiratory tract microbiome dysbiosis impairs clinical responses to immune checkpoint blockade in advanced non-small-cell lung cancer. Clinical and Translational Medicine, 2025, 15(1): e70170 DOI:10.1002/ctm2.70170

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reck M, Rodríguez-Abreu D, Robinson AG, et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50. J Clin Oncol. 2021;39:2339-2349.

[2]

Akinboro O, Larkins E, Pai-Scherf LH, et al. FDA approval summary: pembrolizumab, atezolizumab, and cemiplimab-rwlc as single agents for first-line treatment of advanced/metastatic PD-L1-high NSCLC. Clin Cancer Res. 2022;28:2221-2228.

[3]

Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018-2028.

[4]

Awad MM, Gadgeel SM, Borghaei H, et al. Long-term overall survival from KEYNOTE-021 cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous NSCLC. J Thorac Oncol. 2021;16:162-168.

[5]

Chow A, Uddin FZ, Liu M, et al. The ectonucleotidase CD39 identifies tumor-reactive CD8(+) T cells predictive of immune checkpoint blockade efficacy in human lung cancer. Immunity. 2023;56:93-106.e106.

[6]

Park J, Hsueh PC, Li Z, Ho PC. Microenvironment-driven metabolic adaptations guiding CD8(+) T cell anti-tumor immunity. Immunity. 2023;56:32-42.

[7]

Nabet BY, Esfahani MS, Moding EJ, et al. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell. 2020;183:363-376.e313.

[8]

Puig-Saus C, Sennino B, Peng S, et al. Neoantigen-targeted CD8(+) T cell responses with PD-1 blockade therapy. Nature. 2023;615:697-704.

[9]

Aujla S, Aloe C, Vannitamby A, et al. Programmed death-ligand 1 copy number loss in NSCLC associates with reduced programmed death-ligand 1 tumor staining and a cold immunophenotype. J Thor Oncol. 2022;17:675-687.

[10]

Montalban-Arques A, Katkeviciute E, Busenhart P, et al. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe. 2021;29:1573-1588.e1577.

[11]

Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079-1084.

[12]

Jin Y, Dong H, Xia L, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thor Oncol. 2019;14:1378-1389.

[13]

Galeano Niño JL, Wu H, LaCourse KD, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 2022;611:810-817.

[14]

Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8:403-416.

[15]

Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022;185:1356-1372.e1326.

[16]

Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357:1156-1160.

[17]

Tsay JJ, Wu BG, Badri MH, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med. 2018;198:1188-1198.

[18]

Bender MJ, McPherson AC, Phelps CM, et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell. 2023;186:1846-1862.e1826.

[19]

Lam KC, Araya RE, Huang A, et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell. 2021;184:5338-5356.e5321.

[20]

Canale FP, Basso C, Antonini G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature. 2021;598:662-666.

[21]

Coutzac C, Jouniaux JM, Paci A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 2020;11:2168.

[22]

Nomura M, Nagatomo R, Doi K, et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020;3:e202895.

[23]

Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15:259-270.

[24]

Nakabayashi R, Saito K. Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol. 2015;24:10-16.

[25]

Speciani MC, Cintolo M, Marino M, et al. Flavonoid intake in relation to colorectal cancer risk and blood bacterial DNA. Nutrients. 2022;14.

[26]

Morehouse BR, Yip MCJ, Keszei AFA, McNamara-Bordewick NK, Shao S, Kranzusch PJ. Cryo-EM structure of an active bacterial TIR-STING filament complex. Nature. 2022;608:803-807.

[27]

Nikitina D, Lehr K, Vilchez-Vargas R, et al. Comparison of genomic and transcriptional microbiome analysis in gastric cancer patients and healthy individuals. World J Gastroenterol. 2023;29:1202-1218.

[28]

Lu SC, Knafl M, Turin A, Offodile AC 2nd, Ravi V, Sidey-Gibbons C. Machine learning models using routinely collected clinical data offer robust and interpretable predictions of 90-day unplanned acute care use for cancer immunotherapy patients. JCO Clin Cancer Inform. 2023;7:e2200123.

[29]

Sun L, Bleiberg B, Hwang WT, et al. Association between duration of immunotherapy and overall survival in advanced non-small cell lung cancer. JAMA Oncol. 2023;9:1075-1082.

[30]

Ricciuti B, Wang X, Alessi JV, et al. Association of high tumor mutation burden in non-small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA Oncol. 2022;8:1160-1168.

[31]

Huang RSP, Carbone DP, Li G, et al. Durable responders in advanced NSCLC with elevated TMB and treated with 1L immune checkpoint inhibitor: a real-world outcomes analysis. J Immunother Cancer. 2023;11.

[32]

Leader AM, Grout JA, Maier BB, et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell. 2021;39:1594-1609.e1512.

[33]

Ravi A, Hellmann MD, Arniella MB, et al. Genomic and transcriptomic analysis of checkpoint blockade response in advanced non-small cell lung cancer. Nat Genet. 2023;55:807-819.

[34]

Passaro A, Brahmer J, Antonia S, Mok T, Peters S. Managing resistance to immune checkpoint inhibitors in lung cancer: treatment and novel strategies. J Clin Oncol. 2022;40:598-610.

[35]

Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther. 2023;8:320.

[36]

Lee SH, Cho SY, Yoon Y, et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat Microbiol. 2021;6:277-288.

[37]

Hakozaki T, Richard C, Elkrief A, et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer. Cancer Immunol Res. 2020;8:1243-1250.

[38]

Dora D, Ligeti B, Kovacs T, et al. Non-small cell lung cancer patients treated with anti-PD1 immunotherapy show distinct microbial signatures and metabolic pathways according to progression-free survival and PD-L1 status. Oncoimmunology. 2023;12:2204746.

[39]

Oster P, Vaillant L, Riva E, et al. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut. 2022;71:457-466.

[40]

Teague RB, Wallace RJ Jr, Awe RJ. The use of quantitative sterile brush culture and gram stain analysis in the diagnosis of lower respiratory tract infection. Chest. 1981;79:157-161.

[41]

Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023;21:222-235.

[42]

Schneeberger PHH, Zhang CYK, Santilli J, et al. Lung allograft microbiome association with gastroesophageal reflux, inflammation, and allograft dysfunction. Am J Respir Crit Care Med. 2022;206:1495-1507.

[43]

Zitvogel L, Kroemer G. Lower airway dysbiosis exacerbates lung cancer. Cancer Discov. 2021;11:224-226.

[44]

Goto T. Microbiota and lung cancer. Semin Cancer Biol. 2022;86:1-10.

[45]

Le Noci V, Guglielmetti S, Arioli S, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 2018;24:3528-3538.

[46]

Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45:931-943.

[47]

Ma QY, Huang DY, Zhang HJ, Wang S, Chen XF. Upregulation of bacterial-specific Th1 and Th17 responses that are enriched in CXCR5(+)CD4(+) T cells in non-small cell lung cancer. Int Immunopharmacol. 2017;52:305-309.

[48]

Chang SH, Mirabolfathinejad SG, Katta H, et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc Nat Acad Sci USA. 2014;111:5664-5669.

[49]

Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19:77-94.

[50]

Yan Z, Chen B, Yang Y, et al. Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol. 2022;7:1361-1375.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/