Atezolizumab plus bevacizumab in patients with unresectable or metastatic mucosal melanoma: 3-year survival update and multi-omics analysis

Jie Dai , Tianxiao Xu , Lifeng Li , Meiyu Fang , Jing Lin , Jun Cao , Xue Bai , Caili Li , Xiaoting Wei , Junjie Gu , Yaoyao Liu , Xuan Gao , Xuefeng Xia , Jun Guo , Yu Chen , Lili Mao , Lu Si

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70169

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70169 DOI: 10.1002/ctm2.70169
RESEARCH ARTICLE

Atezolizumab plus bevacizumab in patients with unresectable or metastatic mucosal melanoma: 3-year survival update and multi-omics analysis

Author information +
History +
PDF

Abstract

•3-year follow-up study confirmed the therapeutic efficacy of atezolizumab combined with bevacizumab

•Tumors in the upper site and NRAS mutations are more sensitive to treatment

•Inflammatory cell infiltration, angiogenic status, and activation of the SMAD2 and p38 MAPK pathways may be prognostic indicators

Keywords

atezolizumab / bevacizumab / immunotherapy / mucosal melanoma / VEGF inhibitor

Cite this article

Download citation ▾
Jie Dai, Tianxiao Xu, Lifeng Li, Meiyu Fang, Jing Lin, Jun Cao, Xue Bai, Caili Li, Xiaoting Wei, Junjie Gu, Yaoyao Liu, Xuan Gao, Xuefeng Xia, Jun Guo, Yu Chen, Lili Mao, Lu Si. Atezolizumab plus bevacizumab in patients with unresectable or metastatic mucosal melanoma: 3-year survival update and multi-omics analysis. Clinical and Translational Medicine, 2025, 15(1): e70169 DOI:10.1002/ctm2.70169

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lian B, Cui CL, Zhou L, et al. The natural history and patterns of metastases from mucosal melanoma: an analysis of 706 prospectively-followed patients. Ann Oncol. 2017;28:868-873.

[2]

Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84, 836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer. 1998;83:1664-1678.

[3]

Chi Z, Li S, Sheng X, et al. Clinical presentation, histology, and prognoses of malignant melanoma in ethnic Chinese: a study of 522 consecutive cases. BMC Cancer. 2011;11:85.

[4]

Fujisawa Y, Yoshikawa S, Minagawa A, et al. Clinical and histopathological characteristics and survival analysis of 4594 Japanese patients with melanoma. Cancer Med. 2019;8:2146-2156.

[5]

Kiyohara Y, Uhara H, Ito Y, Matsumoto N, Tsuchida T, Yamazaki N. Safety and efficacy of nivolumab in Japanese patients with malignant melanoma: an interim analysis of a postmarketing surveillance. J Dermatol. 2018;45:408-415.

[6]

Namikawa K, Yamazaki N. Targeted therapy and immunotherapy for melanoma in Japan. Curr Treat Options Oncol. 2019;20:7.

[7]

Zou Z, Ou Q, Ren Y, et al. Distinct genomic traits of acral and mucosal melanomas revealed by targeted mutational profiling. Pigment Cell Melanoma Res. 2020;33:601-611.

[8]

Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545:175-180.

[9]

Bai X, Mao LL, Chi ZH, et al. BRAF inhibitors: efficacious and tolerable in BRAF-mutant acral and mucosal melanoma. Neoplasma. 2017;64:626-632.

[10]

Newell F, Kong Y, Wilmott JS, et al. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat Commun. 2019;10:3163.

[11]

Tang B, Chi Z, Chen Y, et al. Safety, efficacy, and biomarker analysis of toripalimab in previously treated advanced melanoma: results of the POLARIS-01 Multicenter Phase II Trial. Clin Cancer Res. 2020;26:4250-4259.

[12]

Si L, Zhang X, Shu Y, et al. A phase Ib study of pembrolizumab as second-line therapy for Chinese patients with advanced or metastatic melanoma (KEYNOTE-151). Transl Oncol. 2019;12:828-835.

[13]

Hamid O, Robert C, Ribas A, et al. Antitumour activity of pembrolizumab in advanced mucosal melanoma: a post-hoc analysis of KEYNOTE-001, 002, 006. Br J Cancer. 2018;119:670-674.

[14]

Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23-34.

[15]

Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320-330.

[16]

Birck A, Kirkin AF, Zeuthen J, Hou-Jensen K. Expression of basic fibroblast growth factor and vascular endothelial growth factor in primary and metastatic melanoma from the same patients. Melanoma Res. 1999;9:375-381.

[17]

Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol. 2001;19:577-583.

[18]

Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325-340.

[19]

Huang Y, Kim BYS, Chan CK, Hahn SM, Weissman IL, Jiang W. Improving immune-vascular crosstalk for cancer immunotherapy. Nat Rev Immunol. 2018;18:195-203.

[20]

Atkins MB, Plimack ER, Puzanov I, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018;19:405-415.

[21]

Ged Y, Lee CH. Lenvatinib plus pembrolizumab combination therapy for adult patients with advanced renal cell carcinoma. Expert Rev Anticancer Ther. 2022;22:1049-1059.

[22]

Herbst RS, Arkenau H-T, Santana-Davila R, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): a multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol. 2019;20:1109-1123.

[23]

Reck M, Mok TSK, Nishio M, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7:387-401.

[24]

Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894-1905.

[25]

Mao L, Fang M, Chen Y, et al. Atezolizumab plus bevacizumab in patients with unresectable or metastatic mucosal melanoma: a multicenter, open-label, single-arm phase II study. Clin Cancer Res. 2022;28:4642-4648.

[26]

Mcdermott DF, Huseni MA, Atkins MB, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24:749-757.

[27]

Zhu AX, Abbas AR, De Galarreta MR, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022;28:1599-1611.

[28]

Kang JY, Yang J, Lee H, Park S, Gil M, Kim KE. Systematic multiomic analysis of PKHD1L1 gene expression and its role as a predicting biomarker for immune cell infiltration in skin cutaneous melanoma and lung adenocarcinoma. Int J Mol Sci. 2023;25:359.

[29]

Zhou L, Wang X, Chi Z, et al. Association of NRAS mutation with clinical outcomes of anti-PD-1 monotherapy in advanced melanoma: a pooled analysis of four Asian clinical trials. Front Immunol. 2021;12:691032.

[30]

Rozeman EA, Hoefsmit EP, Reijers ILM, et al. Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma. Nat Med. 2021;27:256-263.

[31]

Sinjab A, Han G, Treekitkarnmongkol W, et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion single-cell sequencing. Cancer Discov. 2021;11:2506-2523.

[32]

Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schübeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature. 2015;528:575-579.

[33]

Dimitriou F, Namikawa K, Reijers ILM, et al. Single-agent anti-PD-1 or combined with ipilimumab in patients with mucosal melanoma: an international, retrospective, cohort study. Ann Oncol. 2022;33:968-980.

[34]

Li S, Wu X, Yan X, et al. Toripalimab plus axitinib in patients with metastatic mucosal melanoma:3-year survival update and biomarker analysis. J Immunother Cancer. 2022;10:e004036.

[35]

Johnson DB, Lovly CM, Flavin M, et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res. 2015;3:288-295.

[36]

Van Not OJ, Blokx WAM, Van Den Eertwegh AJM, et al. BRAF and NRAS mutation status and response to checkpoint inhibition in advanced melanoma. JCO Precis Oncol. 2022;6:e2200018.

[37]

Tang B, Mo J, Yan X, et al. Real-world efficacy and safety of axitinib in combination with anti-programmed cell death-1 antibody for advanced mucosal melanoma. Eur J Cancer. 2021;156:83-92.

[38]

Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51.

[39]

Boscolo E, Pastura P, Schrenk S, et al. NRAS(Q61R) mutation in human endothelial cells causes vascular malformations. Angiogenesis. 2022;25:331-342.

[40]

Wang M, Banik I, Shain AH, Yeh I, Bastian BC. Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Med. 2022;14:65.

[41]

Yang Y, Wu J, Demir A, et al. GAB2 induces tumor angiogenesis in NRAS-driven melanoma. Oncogene. 2013;32:3627-3637.

[42]

Liu M, Zhou J, Liu X, et al. Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma. Gut. 2020;69:365-379.

[43]

Gurusamy D, Henning AN, Yamamoto TN, et al. Multi-phenotype CRISPR-Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies. Cancer Cell. 2020;37:818-833 e819.

[44]

Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465-471.

[45]

Zhang L, Zhu Z, Yan H, et al. Creatine promotes cancer metastasis through activation of Smad2/3. Cell Metab. 2021;33:1111-1123 e1114.

[46]

Corral-Jara KF, Chauvin C, Abou-Jaoudé W, et al. Interplay between SMAD2 and STAT5A is a critical determinant of IL-17A/IL-17F differential expression. Mol Biomed. 2021;2:9.

[47]

Sun Q, Cai D, Liu D, et al. BCL6 promotes a stem-like CD8(+) T cell program in cancer via antagonizing BLIMP1. Sci Immunol. 2023;8:eadh1306.

[48]

Jia P, Chen D, Zhu Y, et al. Liensinine improves AngII-induced vascular remodeling via MAPK/TGF-beta1/Smad2/3 signaling. J Ethnopharmacol. 2023;317:116768.

[49]

Rodríguez-Vita J, Sánchez-López E, Esteban V, Rupérez Mó , Egido Jesús, Ruiz-Ortega M. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation. 2005;111:2509-2517.

[50]

Ni X, Xu Yi, Wang W, et al. IL-17D-induced inhibition of DDX5 expression in keratinocytes amplifies IL-36R-mediated skin inflammation. Nat Immunol. 2022;23:1577-1587.

[51]

Chen C, Wang J, Pan D, et al. Applications of multi-omics analysis in human diseases. MedComm (2020). 2023;4:e315.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/